2.如图(2).在⊙O中.半径为50mm.有长50mm的弦AB.C为AB的中点.则OC垂 直于AB吗?OC的长度是多少? [师]在上面的两个题中.大家能分析一下应该用垂径定理呢.还是用逆定理呢? [生]在第1题中.OD.OE都是过圆心的.又OD⊥AB.OE⊥AC.所以已知条件是直径垂直于弦.应用垂径定理,在第2题中.C是弦AB的中点.因此已知条件是平分弦的直径.应用逆定理. [师]很好.在家能用这两个定理完成这两个题吗? [生]1.解:∵OD⊥AB.OE⊥AC.AB⊥AC. ∴四边形ADOE是矩形. ∵AC=AB.∴AE=AD. ∴四边形ADOE是正方形. 查看更多

 

题目列表(包括答案和解析)

(2013•漳州)(1)问题探究
数学课上,李老师给出以下命题,要求加以证明.
如图1,在△ABC中,M为BC的中点,且MA=
12
BC,求证∠BAC=90°.
同学们经过思考、讨论、交流,得到以下证明思路:
思路一 直接利用等腰三角形性质和三角形内角和定理…
思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…
思路三 以BC为直径作圆,利用圆的知识…
思路四…
请选择一种方法写出完整的证明过程;
(2)结论应用
李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:
①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;
②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

查看答案和解析>>

如图1,在△ABC中,E为对角线AB上一点,以AE为一边作正方形AEFH,点F在AC上,连接BF,G为BF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图1中正方形AEFH绕A点逆时针旋转45°,如图2所示,取BF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图1中正方形AEFH绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
精英家教网

查看答案和解析>>

如图1,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为
 
,数量关系为
 

②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?
精英家教网
(2)①如果AB=AC,∠BAC≠90°,点D在射线BC上运动.在图4中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;
②如果∠BAC=90°,AB≠AC,点D在射线BC上运动.在图5中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;
精英家教网
(3)要使(1)问中CF⊥BC的结论成立,试探究:△ABC应满足的一个条件,(点C、F重合除外)画出相应图形(画图不写作法),并说明理由;
(4)在(3)问的条件下,设正方形ADEF的边DE与线段CF相交于点P,设AC=2
2
,BC=
3
2
,求线段CP长的最大值.

查看答案和解析>>

如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为
 
,数量关系为
 
.请利用图2或图3予以证明(选择一个即可).
精英家教网
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且AC=4
2
,BC=3,∠BCA=45°,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
精英家教网

查看答案和解析>>

23、如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为
垂直
,线段CF、BD的数量关系为
相等

②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.

查看答案和解析>>


同步练习册答案