题目列表(包括答案和解析)
n(n+1) |
2 |
n(n+1) |
2 |
|A×m+B×n+C| | ||
|
5 |
12 |
1 |
6 |
5 |
12 |
1 |
6 |
|5×1+(-12)×2+(-2)| | ||
|
21 |
13 |
4 |
3 |
阅读下列材料:
我们知道,一次函数y=kx+b的图象是一条直线,而y=kx+b经过恒等变形可化为直线的另一种表达形式:Ax+Bx+C=0(A、B、C是常数,且A、B不同时为0).如图1,点P(m,n)到直线l:Ax+Bx+C=0的距离(d)计算公式是:d= .
例:求点P(1,2)到直线y= x-的距离d时,先将y= x-化为5x-12y-2=0,再由上述距离公式求得d= = .
解答下列问题:
如图2,已知直线y=-x-4与x轴交于点A,与y轴交于点B,抛物线y=x2-4x+5上的一点M(3,2).
(1)求点M到直线AB的距离.
(2)抛物线上是否存在点P,使得△PAB的面积最小?若存在,求出点P的坐标及△PAB面积的最小值;若不存在,请说明理由.
阅读材料,解答问题.
例 如图,在△中,∠,∠,利用此等腰直角三角形你能求出的值吗?
解:延长到点,使,连结.
设().
∵在△中,∠,∠.
∴∠.
∴,.
∴.
∴.
(1)仿照上例,求出的值;
(2)在一次课外活动中,小刘从上例得到启发,用硬纸片做了两个直角三角形,如图1、图2.图1中,∠,∠,;图2中,∠,∠,.图3是小刘所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).
①在△沿方向移动的过程中,∠的度数逐渐__________.(填“不变”、“变大”、“变小”)
②在△移动过程中,是否存在某个位置,使得∠?如果存在,求出的长度;如果不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com