9.两;∠ACD和∠B;∠BCD;同角的余角相等 查看更多

 

题目列表(包括答案和解析)

24、在研究三角形内角和等于180°的证明方法时,小胡和小杜分别给出了下列证法.
小胡:在△ABC中,延长BC到D(如左图),
∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).
又∵∠ACD+∠ACB=180°(平角定义),
∴∠A+∠B+∠ACB=180°(等量代换).
小杜:在△ABC中,作CD⊥AB(如右图),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定义).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等量加等量和相等).
∴∠A+∠B+∠ACB=180°.
请你对上述两名同学的证法给出评价,并另写出一种你认为较简单的证明三角形内角和定理的方法.

查看答案和解析>>

在研究三角形内角和等于180°的证明方法时,小胡和小杜分别给出了下列证法.
小胡:在△ABC中,延长BC到D(如左图),
∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).
又∵∠ACD+∠ACB=180°(平角定义),
∴∠A+∠B+∠ACB=180°(等量代换).
小杜:在△ABC中,作CD⊥AB(如右图),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定义).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等量加等量和相等).
∴∠A+∠B+∠ACB=180°.
请你对上述两名同学的证法给出评价,并另写出一种你认为较简单的证明三角形内角和定理的方法.

查看答案和解析>>

在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.

小明:在△ABC中,延长BC到D,

∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).

又∵∠ACD+∠ACB=180°(平角定义),

∴∠A+∠B+∠ACB=180°(等式的性质).

小虎:在△ABC中,作CD⊥AB(如图),

∵CD⊥AB(已知),

∴∠ADC=∠BDC=90°(直角定义).

∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).

∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质).

∴∠A+∠B+∠ACB=180°.

请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.

查看答案和解析>>

15、如图,∠ACB=90°,CD⊥AB,则图中与∠A互余的角有
个,它们分别是
∠ACD和∠B
.∠A=
∠BCD
,根据是
同角的余角相等

查看答案和解析>>


同步练习册答案