题目列表(包括答案和解析)
(本小题满分12分)二次函数的图象经过三点.
(1)求函数的解析式(2)求函数在区间上的最大值和最小值
(本小题满分12分)已知等比数列{an}中,
(Ⅰ)求数列{an}的通项公式an;
(Ⅱ)设数列{an}的前n项和为Sn,证明:;
(Ⅲ)设,证明:对任意的正整数n、m,均有(本小题满分12分)已知函数,其中a为常数.
(Ⅰ)若当恒成立,求a的取值范围;
(Ⅱ)求的单调区间.(本小题满分12分)
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投篮一次命中得3分,未命中得-1分,求乙所得分数η的概率分布和数学期望.(本小题满分12分)已知是椭圆的两个焦点,O为坐标原点,点在椭圆上,且,圆O是以为直径的圆,直线与圆O相切,并且与椭圆交于不同的两点A、B.
(1)求椭圆的标准方程;w.w.w.k.s.5.u.c.o.m
(2)当时,求弦长|AB|的取值范围.
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
答案
B
B
D
D
C
A
C
B
A
C
二、填空题:本大题共6小题,每小题4分,共24分。把答案填在题中横线上。
11.13 12. 13.2 14.4 15. 16.1005
三、解答题:本大题共6小题,共78分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)
解(I)
(Ⅱ)由得,
18.(本小题满分12分)
解(I)记事件A;射手甲剩下3颗子弹,
(Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件
(Ⅲ)的取值分别为16,17,18,19,20,
19.(本小题满分12分)
解法一:
(I)设为的中点,连结,
为的中点,为的中点,
====
==
(Ⅱ)
(Ⅲ)过点向作垂线,垂足为,连结,
解法二:
分别以所在直线为坐标轴建立空间直角坐标系,
(I)
(Ⅱ)设平面的一个法向量为
(Ⅲ)平面的一个法向量为
20.(本小题满分12分)
(1)由
切线的斜率切点坐标(2,5+)
所求切线方程为
(2)若函数为上单调增函数,
则在上恒成立,即不等式在上恒成立
也即在上恒成立。
令上述问题等价于
而为在上的减函数,
则于是为所求
21.(本小题满分14分)
解(I)设
(Ⅱ)(1)当直线的斜率不存在时,方程为
(2)当直线的斜率存在时,设直线的方程为,
设,
,得
22.(本小题满分14分)
解(I)由题意,令
(Ⅱ)
(1)当时,成立:
(2)假设当时命题成立,即
当时,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com