18.甲乙两名射手互不影响地进行射击训练.根据以往的数据统计.他们设计成绩的分布列如下:射手甲 射手乙环数8910环数8910概率 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:

射手甲

射手乙

环数

8

9

10

环数

8

9

10

概率

概率

(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;

(Ⅱ)若两个射手各射击1次,记所得的环数之和为,求的分布列和期望.

 

查看答案和解析>>

(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:

射手甲
射手乙
环数
8
9
10
环数
8
9
10
概率



概率



(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(Ⅱ)若两个射手各射击1次,记所得的环数之和为,求的分布列和期望.

查看答案和解析>>

(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
射手甲
射手乙
环数
8
9
10
环数
8
9
10
概率



概率



(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(Ⅱ)若两个射手各射击1次,记所得的环数之和为,求的分布列和期望.

查看答案和解析>>

(本小题满分12分)

甲、乙两名射手各进行一次射击,射中环数的分布列分别为:

8

9

10

P

0.3

0.5

a

8

9

10

P

0.2

0.3

b

(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;

(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数的分布列及期望,并求结束时射击轮次超过2次的概率。

 

查看答案和解析>>

(本小题满分12分)

甲、乙两名射手各进行一次射击,射中环数的分布列分别为:

8

9

10

P

0.3

0.5

a

8

9

10

P

0.2

0.3

b

(I)确定a、b的值,并求两人各进行一次射击,都射中10环的概率;

(II)两各射手各射击一次为一轮射击,如果在某一轮射击中两人都射中10环,则射击结束,否则继续射击,但最多不超过4轮,求结束时射击轮次数的分布列及期望,并求结束时射击轮次超过2次的概率。

 

查看答案和解析>>

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

题号

1

2

3

4

5

6

7

8

9

10

答案

B

B

D

D

C

A

C

B

A

C

二、填空题:本大题共6小题,每小题4分,共24分。把答案填在题中横线上。

11.13     12.       13.2     14.4       15.      16.1005

三、解答题:本大题共6小题,共78分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

解(I)

      

  (Ⅱ)由

       

18.(本小题满分12分)

解(I)记事件A;射手甲剩下3颗子弹,

      

   (Ⅱ)记事件甲命中1次10环,乙命中两次10环,事件;甲命中2次10环,乙命中1次10环,则四次射击中恰有三次命中10环为事件

(Ⅲ)的取值分别为16,17,18,19,20,

     

19.(本小题满分12分)

解法一:

(I)设的中点,连结

  的中点,的中点,

==(//)==(//)

==(//)

   

(Ⅱ)

 

(Ⅲ)过点作垂线,垂足为,连结

   

解法二:

分别以所在直线为坐标轴建立空间直角坐标系,

(I)

     

 (Ⅱ)设平面的一个法向量为

      

(Ⅲ)平面的一个法向量为

     

 

20.(本小题满分12分)

   (1)由

        切线的斜率切点坐标(2,5+

        所求切线方程为

   (2)若函数为上单调增函数,

        则上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述问题等价于

        而为在上的减函数,

        则于是为所求

21.(本小题满分14分)

解(I)设

       

 (Ⅱ)(1)当直线的斜率不存在时,方程为

      

      

  (2)当直线的斜率存在时,设直线的方程为

       设

      ,得

      

      

      

              

22.(本小题满分14分)

解(I)由题意,令

      

 (Ⅱ)

      

  (1)当时,成立:

  (2)假设当时命题成立,即

       当时,

      

 


同步练习册答案