若分式 与 的值相等,则为( ) A.0 B. C.1 D.不等于1的一切实数 查看更多

 

题目列表(包括答案和解析)

如图,等边△ABC的边长为2
3
,以BC边所在直线为x轴,BC边上的高线AO所在的直线为y轴建立平面直角坐标系.
(1)求过A、B、C三点的抛物线的解析式.
(2)如图,设⊙P是△ABC的内切圆,分别切AB、AC于E、F点,求阴影部分的面积.
(3)点D为y轴上一动点,当以D点为圆心,3为半径的⊙D与直线AB、AC都相切时,试判断⊙D与(2)中⊙P的位置关系,并简要说明理由.
(4)若(2)中⊙P的大小不变,圆心P设y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时a的取值范围.
精英家教网

查看答案和解析>>

如图,等边△ABC的边长为数学公式,以BC边所在直线为x轴,BC边上的高线AO所在的直线为y轴建立平面直角坐标系.
(1)求过A、B、C三点的抛物线的解析式.
(2)如图,设⊙P是△ABC的内切圆,分别切AB、AC于E、F点,求阴影部分的面积.
(3)点D为y轴上一动点,当以D点为圆心,3为半径的⊙D与直线AB、AC都相切时,试判断⊙D与(2)中⊙P的位置关系,并简要说明理由.
(4)若(2)中⊙P的大小不变,圆心P设y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时a的取值范围.

查看答案和解析>>

如图,等边△ABC的边长为,以BC边所在直线为x轴,BC边上的高线AO所在的直线为y轴建立平面直角坐标系.
(1)求过A、B、C三点的抛物线的解析式.
(2)如图,设⊙P是△ABC的内切圆,分别切AB、AC于E、F点,求阴影部分的面积.
(3)点D为y轴上一动点,当以D点为圆心,3为半径的⊙D与直线AB、AC都相切时,试判断⊙D与(2)中⊙P的位置关系,并简要说明理由.
(4)若(2)中⊙P的大小不变,圆心P设y轴运动,设P点坐标为(0,a),则⊙P与直线AB、AC有几种位置关系?并写出相应位置关系时a的取值范围.

查看答案和解析>>

①当m取何值时,关于x的方程:3x﹣2=4与5x﹣1=﹣m的解相等?
②一堆小麦用8个编织袋来装,以每袋55千克为标准,超过的记作为正数,不足的记作为负数,现记录如下:(单位:千克)+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2
(1)这堆小麦共重多少千克?
(2)若每千克小麦的售价为1.2元,则这堆小麦可卖多少钱?
③探索规律:观察下面由组成的图案和算式,解答问题:
(1)请猜想1+3+5+7+9+…+19=      
(2)请猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)=              
(3)请用上述规律计算:103+105+107+…+2003+2005.
④在左边的日历中,用一个正方形任意圈出二行二列四个数,

若在第二行第二列的那个数表示为a,其余各数分别为b,c,d.

(1)分别用含a的代数式表示b,c,d这三个数.
(2)求这四个数的和(用含a的代数式表示,要求合并同类项化简)
(3)这四个数的和会等于51吗?如果会,请算出此时a的值,如果不会,说明理由.(要求列方程解答)

查看答案和解析>>

已知抛物线y=2x2,⊙O与抛物线交于A、B两点,AB两点所在的直线为l,⊙O的半径为2。
(1)当x>xB时,抛物线上存在一动点C,则随着C点的向上运动,三角形ABC面积不断增加,问三角形ABC面积每秒的增加量△S是什么?(友情提醒:C点的速度为v0·s-1);
(2)存在一点D在劣弧AB上运动(不与A、B重合)设D(h,k),问抛物线上是否存在点E使得三角形ABD与三角形ABE的面积相等?若存在,求出点E;若不存在,请说明理由;
(3)F(m,n)(m>0)是抛物线y=2x2上的点,OF⊥FG,G(a,0)(a>m),△OFG的面积为S,且S=4n4,n是不大于40的整数,求OF2的最小值;
(4)在抛物线上取两点J、K,xJ<0,xk>0,连接OJ、JK、OK,使得角OKJ=60°,再以OK、OJ、JK分别作等边三角形OKL、OJM、OKN,请你求出经过M、N、L三点的抛物线的解析式。

查看答案和解析>>


同步练习册答案