高为的等边三角形的面积等于 . 查看更多

 

题目列表(包括答案和解析)

如图AE是等边三角形ABC边BC上的高,AB=4,DC⊥BC,垂足为C,CD=,BD与AE,AC分别交于点F,M。
(1)求AF的长;
(2)求证:AM:CM=3:2;
(3)求△BCM的面积。

查看答案和解析>>

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角三角形系。

(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s)。
①当t为何值时,ΔABP是直角三角形;
②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动。试写出ΔBPQ的面积S关于t的函数解析式,并写出自变量的取值范围。

查看答案和解析>>

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角三角形系。

(1)求直线AC的解析式;

(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s)。

①当t为何值时,ΔABP是直角三角形;

②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动。试写出ΔBPQ的面积S关于t的函数解析式,并写出自变量的取值范围。

 

查看答案和解析>>

如图,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直线为x轴,以BC边上的高所在的直线为y轴建立平面直角三角形系。

(1)求直线AC的解析式;
(2)有一动点P以1cm/s的速度从点B开始沿x轴向其正方向运动,设点P的运动为t秒(单位:s)。
①当t为何值时,ΔABP是直角三角形;
②现有另一点Q与点P同时从点B开始,以1cm/s的速度从点B开始沿折线BAC运动,当点Q到达点C时,P、Q两点同时停止运动。试写出ΔBPQ的面积S关于t的函数解析式,并写出自变量的取值范围。

查看答案和解析>>

已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点在y 轴正半轴上(如图(1))。
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式;
(2)如图(2),点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。
①当△BDE是等腰三角形时,直接写出此时点E的坐标;
②又连接CD、CP(如图(3)),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。

查看答案和解析>>


同步练习册答案