20.如图.P是等边△ABC内一点.且PA=6.PC=8.PB=10.若△APB绕点A逆时针旋转60°后.得到△AP′C.利用上述旋转可以先计算出∠P′PC.然后再计算出∠APC.则∠APC= °. 查看更多

 

题目列表(包括答案和解析)

如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.

(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.

(2)若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,并说明理由.

查看答案和解析>>

如下图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.

(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论.

(2)若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,并说明理由.

查看答案和解析>>

 

1.请阅读材料并填空:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连结PP′.

根据李明同学的思路,进一步思考后可求得∠BPC=­____°,等边△ABC的边长为____.

2.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

 

查看答案和解析>>

 

1.请阅读材料并填空:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连结PP′.

根据李明同学的思路,进一步思考后可求得∠BPC=­____°,等边△ABC的边长为____.

2.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

 

查看答案和解析>>

(1)请阅读材料并填空:

问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连结

根据李明同学的思路,进一步思考后可求得∠BPC=________°,等边△ABC的边长为________.

(2)请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1.求∠BPC的度数和正方形ABCD的边长.

查看答案和解析>>


同步练习册答案