变式延伸.进行重构. 重视课本例题.适当对题目进行引申,使例题的作用更加突出.有利于学生对知识的串联.累积.加工.从而达到举一反三的效果. 查看更多

 

题目列表(包括答案和解析)

(1)如图1,矩形ABCD中,AB:BC=2:3,点E、F分别在边AD和CD上,且AF⊥BE于O,求
AF
BE
的值;
(2)在上面的问题中,若
AF
BE
=k,通过变式,我们可以得到如下的两个命题:
①若将AF沿直线AB方向平移到PQ,将BE沿直线AD方向平移到RS,然后将PQ与RS同时绕点O旋转(保持PQ与RS垂直),则
PQ
RS
=k;
②设P、R、Q、S依次是矩形的边AB、BC、CD、DA上的点,若=k,则PQ⊥RS.精英家教网
(Ⅰ)判断命题的真假性:①
 
;②
 
;(在横线上填“真命题”或“假命题”)
(Ⅱ)若其中有假命题,请你在图3中,用画图的方法举反例进行说明;若以上两个命题都是真命题,请选择其中一个给予证明.

查看答案和解析>>

(教材变式题)某水果公司以1.5元/千克的成本新进了20000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:
(1)请你完成表格;
(2)如果公司希望这些柑橘能够获得税前利润10000元以上,那么在出售柑橘(已去掉损坏的柑橘)时,大约每千克定价为多少元比较合适?
柑橘总质量
n/千克
损坏柑橘
质量m/千克
柑橘损坏的频率
 
m
n
100 11.00 0.110
200 21.00 0.105
300 30.30  
400 38.84  
500 48.50  
600 61.86  
700 70.64  
800 78.48  
900 89.14  
1000 103.08  

查看答案和解析>>

30、这是一位学生编制的初中数学练习题:
“x1、x2是方程x2-2x+2=0的两个实数根,求x12+x22的值”.
另一位初三学生的解答是:
“∵x1+x2=x1x2=2,∴x12+x22=(x1+x22-2x1x2=22-2×2=0”
(1)针对练习题和解答的正误作出判决,再简要说明理由;
(2)只对原练习题的方程进行变式,其它条件不变,求改后的值.

查看答案和解析>>

(2013•莒南县一模)【典型练习】如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(无需证明)
【拓展变式】小明很顺利的完成了上面的练习后,又进一步对该命题进行了发散思维,把原命题中的一些条件进行了变换,得到了如下三个不同的命题:
(1)如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.
(2)如果两个三角形有两条边和第三边上的高对应相等,那么这两个三角形全等.
(3)如果两个三角形有两条边和夹角的平分线对应相等,那么这两个三角形全等.
【探索新知】小明对这三个命题,无法判断其命题的真假,于是他向老师求教.数学老师对命题(1)做出了一些指导,请你帮助小明完成下面的解答过程.
已知:如图,AB=A′B′,AD=A′D′,AD是BC边上的中线,A′D′是B′C′边上的中线,求证:△ABC≌△A′B′C′,
证明:如图,延长AD至E使AD=DE,连接BE,延长A′D′至E′使A′D′=D′E′,连接B′E′.
【合作学习】对于命题(2)、(3),你能帮助小明判断命题的真假吗?如果是真命题,请给完整的证明,如果是假命题,在下面的空白处做出解答.(要求:画出图形,说明理由.)

查看答案和解析>>

(教材变式题)某水果公司以1.5元/千克的成本新进了20000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:
(1)请你完成表格;
(2)如果公司希望这些柑橘能够获得税前利润10000元以上,那么在出售柑橘(已去掉损坏的柑橘)时,大约每千克定价为多少元比较合适?
柑橘总质量
n/千克
损坏柑橘
质量m/千克
柑橘损坏的频率
 
m
n
100 11.00 0.110
200 21.00 0.105
300 30.30  
400 38.84  
500 48.50  
600 61.86  
700 70.64  
800 78.48  
900 89.14  
1000 103.08  

查看答案和解析>>


同步练习册答案