24.本小题满分10分. 已知二次函数图象的顶点是.且过点. (1)求二次函数的表达式.并在图10中画出它的图象, (2)求证:对任意实数.点都不在这个 二次函数的图象上. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.

    (1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物

线的对称轴上,求实数a的值;

    (2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于

边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的

任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即

这四条线段不能构成平行四边形).”若点P是边EF或边FG上的任意一点,刚才的结论是

否也成立?请你积极探索,并写出探索过程;

    (3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是

否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等

(即这四条线段能构成平行四边形)?请说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).

(1)求b的值,并写出当0<x≤3时y的取值范围;

(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.

①试比较y1和y2的大小;

②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形

三边的长,并说明理由.

 

查看答案和解析>>

(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).
(1)求b的值,并写出当0<x≤3时y的取值范围;
(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.
①试比较y1和y2的大小;
②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形
三边的长,并说明理由.

查看答案和解析>>

(本题满分10分)已知二次函数y=x2+bx-3的图像经过点P(-2,5).
(1)求b的值,并写出当0<x≤3时y的取值范围;
(2)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图像上.
①试比较y1和y2的大小;
②当m取不小于5的任意实数时,请你探索:y1、y2、y3能否作为一个三角形
三边的长,并说明理由.

查看答案和解析>>


同步练习册答案