题目列表(包括答案和解析)
甲、乙两公司生产同一种产品,经测算,对于函数g(x)、g(x)及任意的x≥0,当甲公司投入x万元作宣传时,若乙公司投入的宣传费小于f(x)万元,则乙公司有失败的风险,否则无失败风险;当乙公司投入x万元作宣传时,若甲公司投入的宣传费小于g(x)万元,则甲公司有失败的风险,否则无失败风险.
(1)试解释f(0)=11、g(0)=21的实际意义;
(2)当,时,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用.问此时甲、乙两公司各应投入多少宣传费?
x |
甲、乙两公司生产同一种新产品,经测算,对于函数、及任意的,当甲公司投入万元作宣传时,若乙公司投入的宣传费小于万元,则乙公司有失败的风险,否则无失败的风险;当乙公司投入万元作宣传时,若甲公司投入的宣传费小于万元,则甲公司有失败的风险,否则无失败的风险.
(1)请解释的实际意义;
(2)当时,甲、乙两公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能地少投入宣传费用,问此时甲、乙两公司应各投入多少宣传费用?
1-12题 AAAAA CDDCD BB
13、等腰梯形;14、;15、充分非必要;16、186
17、
18、解:由+25+|-5|≥,而,等号当且仅当时成立;且,等号当且仅当时成立;所以,,等号当且仅当时成立;故。
19、(Ⅰ)表示当甲公司不投入宣传费时,乙公司要回避失败的风险至少要投入11万元的宣传费;表示当乙公司不投入宣传费时,甲公司要回避失败的风险至少要投入21万元的宣传费.
(Ⅱ)设甲、乙公司投入的宣传费分别为、万元,当且仅当①,
且……②时双方均无失败的风险,
由①②得易解得,
所以,故.
20、解:(1) 令g(x)=f(x)-2x=ln(x+m)-2x, 则g(x)=-2
∵x≥2-m ∴x+m≥2 ∴≤ 从而g(x)=-2≤-2<0
∴g(x)在[2-m, +上单调递减 ∴x=2-m时,
g(x)=f(x)-2x最大值=ln(2-m+m)-2(2-m)=ln2+
(2) 假设f(x)=x还有另一解x=() 由假设知
-=f()-f()=f(x)?(-) x[2-m, +
故f(x)=1, 又∵f(x)=≤<1 矛盾
故f(x)=x有唯一解x=
21、
22、解:(1)若,则在定义域内存在,
使得,∵方程无解,
∴.
,
当时,, 当时,由,
得。
∴ .
,
又∵函数图象与函数的图象有交点,设交点的横坐标为,
则,其中,
∴,即 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com