(Ⅱ)若.P.Q为轨迹M上不同的两点.且.求直线BP与直线BQ的叙率之积. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,P是圆x2+y2=4上的动点,P点在x轴上的投影是D,点M满足
DM
=
1
2
DP

(1)求动点M的轨迹C的方程,并说明轨迹是什么图形;
(2)过点N(3,0)的直线l与动点M的轨迹C交于不同的两点A,B,求以OA,OB为邻边的平行四边形OAEB的顶点E的轨迹方程.
(3)若存在点Q(a,0),使得四边形QAFB为菱形(A,B意义同(2)),求实数a的取值范围.

查看答案和解析>>

已知点P(-2
2
,0),Q(2
2
,0)
,动点N(x,y),设直线NP,NQ的斜率分别记为k1,k2,记k1?k2=-
1
4
(其中“?”可以是四则运算加、减、乘、除中的任意一种运算),坐标原点为O,点M(2,1).
(Ⅰ)探求动点N的轨迹方程;
(Ⅱ)若“?”表示乘法,动点N的轨迹再加上P,Q两点记为曲线C,直线l平行于直线OM,且与曲线C交于A,B两个不同的点.
(ⅰ)若原点O在以AB为直径的圆的内部,试求出直线l在y轴上的截距m的取值范围.
(ⅱ)试求出△AOB面积的最大值及此时直线l的方程.

查看答案和解析>>

已知圆C:数学公式,点数学公式,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,D,F分别为曲线E与x轴的左,右两交点,若直线DP与曲线E相交于异于D的点N,证明△NPF为钝角三角形.

查看答案和解析>>

点A为圆O:上一动点,AB轴于B点,记线段AB的中点D的运动轨迹为曲线C。

(I)求曲线C的方程;

(II)是否存在过点P与曲线C交于M,N两个不同的点,且对外任意一点Q,有成立?若存在,求出的方程;若不存在,说明理由.

查看答案和解析>>

已知椭圆=1上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且=2,点M的轨迹为曲线E.

(1)求曲线E的方程;

(2)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足=2,求直线l的方程.

查看答案和解析>>


同步练习册答案