题目列表(包括答案和解析)
已知函数,.
(1)设是函数的一个零点,求的值;
(2)求函数的单调递增区间.
【解析】第一问利用题设知.因为是函数的一个零点,所以即(
所以
第二问
当,即()时,
函数是增函数,
故函数的单调递增区间是()
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
已知函数,(),
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当时,若函数的单调区间,并求其在区间(-∞,-1)上的最大值。
【解析】(1),
∵曲线与曲线在它们的交点(1,c)处具有公共切线
∴,
∴
(2)令,当时,
令,得
时,的情况如下:
x |
|||||
+ |
0 |
- |
0 |
+ |
|
|
|
所以函数的单调递增区间为,,单调递减区间为
当,即时,函数在区间上单调递增,在区间上的最大值为,
当且,即时,函数在区间内单调递增,在区间上单调递减,在区间上的最大值为
当,即a>6时,函数在区间内单调递赠,在区间内单调递减,在区间上单调递增。又因为
所以在区间上的最大值为。
| ||
2 |
1 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com