由,知1≤≤8. 查看更多

 

题目列表(包括答案和解析)

由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水),游泳池的水深经常变化,已知泰州某浴场的水深y(米)是时间t(0≤t≤24),(单位小时)的函数,记作y=f(t),下表是某日各时的水深数据经长期观测的曲线y=f(t)可近似地看成函数y=Acosωt+b
t(时) 0 3 6 9 12 15 18 21 24
y(米) 2 5 2 0 15 20 249 2 151 199 2 5
(Ⅰ)根据以上数据,求出函数y=Acosωt+b的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多少时间可供游泳爱好者进行运动.

查看答案和解析>>

由正态分布N(1,8)对应的曲线可知,当x=
 
时,函数P(x)有最大值,为
 

查看答案和解析>>

由经验得知,在清远某商场付款处排队等候付款的人数及其概率如下表:
排队人数 5人及以下 6 7 8 9 10人及以上
概率 0.1 0.16 0.3 0.3 0.1 0.04
(1)至多6个人排队的概率.
(2)至少8个人排队的概率.

查看答案和解析>>

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

 

支持

保留

不支持

20岁以下

800

450

200

20岁以上(含20岁)

100

150

300

(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;

(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率;

(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取个数,求该数与总体平均数之差的绝对值超过0.6的概率.

 

查看答案和解析>>

由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高。然而也有部分公众对该活动的实际效果与负面影响提出了疑问。对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

 

支持

   保留

  不支持

20岁以下

     800

   450

   200

20岁以上(含20岁)

     100

   150

   300

⑴在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45个人,求n的值;

⑵在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中

任意选取2人,求至少1人20岁以下的概率;

⑶在接受调查的人中,有8人给这项活动打出了分数如下:9.4, 8.6, 9.2, 9.6, 8.7

9.3, 9.0, 8.2.把这8人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过0.6的概率。

 

查看答案和解析>>


同步练习册答案