A. B. C. D. 第5题图 查看更多

 

题目列表(包括答案和解析)

如图是长度为定值的平面的斜线段,点为斜足,若点在平面内运动,使得的面积为定值,则动点P的轨迹是

A.圆            B.椭圆    

C一条直线      D两条平行线

第Ⅱ卷(非选择题  共110分)

填空题(本大题共6小题,每小题5分,共30分.)

查看答案和解析>>

给出下列命题:①函数y=cos(
2
3
x+
π
2
)
是奇函数;②存在实数α,使得sin α+cos α=
3
2
;③若α、β是第一象限角且α<β,则tan α<tan β;④x=
π
8
是函数y=sin(2x+
4
)
的一条对称轴方程;⑤函数y=sin(
2
3
x+
π
2
)
的图象关于点(
π
12
,0)
成中心对称图形.其中正确的序号为(  )
A、①③B、②④C、①④D、④⑤

查看答案和解析>>

判断下列各命题:
①若α,β是第一象限角,且α>β,则cosα<cosβ;
②α,β都是第一象限角,若sinα>sinβ,则cosα<cosβ;
③若函数f(x)=sin(
x+5π
2
),g(x)=cos(
x+5π
2
)
,则f(x)是偶函数,g(x)是奇函数
④若函数y=sin2x的图象向左平移
π
4
个单位,得到函数y=sin(2x+
π
4
)
的图象.
其中正确有命题为(  )

查看答案和解析>>

给出下列五个命题:
(1)函数y=-sin(kπ+x)(k∈Z)是奇函数;
(2)函数f(x)=tanx的图象关于点(kπ+
π
2
,0)(k∈Z)
对称;
(3)函数f(x)=sin|x|是最小正周期为π的周期函数;
(4)设θ是第二象限角,则tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函数y=cos2x+sinx的最小值是-1.
其中正确的命题是(  )

查看答案和解析>>

给出下列五个命题:
(1)函数y=-sin(kπ+x)(k∈Z)是奇函数;
(2)函数f(x)=tanx的图象关于点(kπ+
π
2
,0)(k∈Z)
对称;
(3)函数f(x)=sin|x|是最小正周期为π的周期函数;
(4)设θ是第二象限角,则tan
θ
2
>cot
θ
2
,且sin
θ
2
>cos
θ
2

(5)函数y=cos2x+sinx的最小值是-1.
其中正确的命题是(  )
A.(1)、(2)、(3)B.(1)、(2)、(5)C.(1)、(5)D.(1)、(3)、(4)

查看答案和解析>>

一、选择题:

1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

二、填空题:

13. 5;14. 18 ;15. 2 ;16. ③④

三、解答题:

17. 解:(1) 由已知得,即,………………2分

所以数列{}是以1为首项,公差2的等差数列.…………………………4分

.………………………………………5分

(2) 由(1)知:,从而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的单调递增区间为[] (k∈Z)……………………12分

19. (1)解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.…………………4分

(1) 从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.…………………………6分

∴选出的两名志愿者都是书法比赛一等奖的概率.…………………8分

(2) 从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.………………………10分

∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是.………………………12分

20. 解:(1) 取AB的中点G,连FG,可得FG∥AE,FG=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,FG=CD,∵FG⊥平面ABC……………4分

∴四边形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F为BE中点,∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)与圆相切,则,即,所以,

………………………3分

则由,消去y得:  (*)

由Δ=,∴………………4分

(2) 设,由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)为

由弦长公式得

 … 10分

所以………………………12分

22. (1) 解:设x∈(0,1],则-x∈[-1,0),∴………………1分

是奇函数.∴=………………………2分

∴当x∈(0,1]时, ,…………………3分

………………………………4分

(2) 当x∈(0,1]时,∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是单调递增函数.…………………9分

(3) 解:当时, 在(0,1]上单调递增. ,

(不合题意,舍之),………………10分

时,由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此时∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 

 


同步练习册答案