(2)若.求直线的方程,的条件下.求三角形OAB面积. 查看更多

 

题目列表(包括答案和解析)

直线过点P(
43
,2)且与x轴、y轴的正半轴分别交于A、B两点,点O为坐标原点,是否存在这样的直线满足下列条件:
(1)△AOB的周长为12;
(2)△AOB的面积为6.若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

直线过点P(数学公式,2)且与x轴、y轴的正半轴分别交于A、B两点,点O为坐标原点,是否存在这样的直线满足下列条件:
(1)△AOB的周长为12;
(2)△AOB的面积为6.若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

直线过点P(,2)且与x轴、y轴的正半轴分别交于A、B两点,点O为坐标原点,是否存在这样的直线满足下列条件:
(1)△AOB的周长为12;
(2)△AOB的面积为6.若存在,求出直线方程;若不存在,请说明理由.

查看答案和解析>>

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆的直线x+2y-1=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)得条件下,求以MN为直径的圆的方程.

查看答案和解析>>

已知直线m的参数方程
x=
t
a2+1
y=2+
at
a2+1
(t为参数,a∈R),圆C的参数方程为
x=2cosθ
y=3+2sinθ
(θ为参数)
(1)试判断直线m与圆C的位置关系,并说明理由;
(2)当a=-
1
3
时,求直线m与圆C的相交弦长;
(3)在第二问的条件下,若有定点A(-1,0),过点A的动直线l与圆C交于P,Q两点,M是P,Q的中点,l与m交于点N,探究
AM•
AN
是否与直线l的倾斜角有关,若无关,请求出定值,若有关,请说明理由.

查看答案和解析>>

一、选择题:

1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B  11. A   12. B

二、填空题:

13. 5;14. 18 ;15. 2 ;16. ③④

三、解答题:

17. 解:(1) 由已知得,即,………………2分

所以数列{}是以1为首项,公差2的等差数列.…………………………4分

.………………………………………5分

(2) 由(1)知:,从而.…………………………7分

………………………………9分

……………………12分

18. 解:(1)……2分

……………………4分

………………………6分

(2) ∵

(k∈Z);…………………… 8分

≤x≤(k∈Z);…………………………10分

的单调递增区间为[] (k∈Z)……………………12分

19. (1)解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6.从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.…………………4分

(1) 从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.…………………………6分

∴选出的两名志愿者都是书法比赛一等奖的概率.…………………8分

(2) 从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8个.………………………10分

∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是.………………………12分

20. 解:(1) 取AB的中点G,连FG,可得FG∥AE,FG=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

∴FG∥CD,FG=CD,∵FG⊥平面ABC……………4分

∴四边形CDFG是矩形,DF∥CG,CG平面ABC,

DF平面ABC∴DF∥平面ABC…………………6分

(2) Rt△ABE中,AE=2a,AB=2a,F为BE中点,∴AF⊥BE

∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

∴AF⊥平面BDF,∴AF⊥BD.……………………12分

21. 解:(1)与圆相切,则,即,所以,

………………………3分

则由,消去y得:  (*)

由Δ=,∴………………4分

(2) 设,由(*)得,.…………5分

.…………………………6分

,所以.∴k=±1.

.,∴………………………7分

.…………………8分

(3) 由(2)知:(*)为

由弦长公式得

 … 10分

所以………………………12分

22. (1) 解:设x∈(0,1],则-x∈[-1,0),∴………………1分

是奇函数.∴=………………………2分

∴当x∈(0,1]时, ,…………………3分

………………………………4分

(2) 当x∈(0,1]时,∵…………………6分

,x∈(0,1],≥1,

.………………………7分

.……………………………8分

在(0,1]上是单调递增函数.…………………9分

(3) 解:当时, 在(0,1]上单调递增. ,

(不合题意,舍之),………………10分

时,由,得.……………………………11分

如下表:

1

>0

0

<0

 

最大值

   ㄋ

 

由表可知: ,解出.……………………12分

此时∈(0,1)………………………………13分

∴存在,使在(0,1]上有最大值-6.………………………14分

 

 

 

 


同步练习册答案