A. 查看更多

 

题目列表(包括答案和解析)

精英家教网A.(选修4-4坐标系与参数方程)已知点A是曲线ρ=2sinθ上任意一点,则点A到直线ρsin(θ+
π3
)=4
的距离的最小值是
 

B.(选修4-5不等式选讲)不等式|x-log2x|<x+|log2x|的解集是
 

C.(选修4-1几何证明选讲)如图所示,AC和AB分别是圆O的切线,且OC=3,AB=4,延长AO到D点,则△ABD的面积是
 

查看答案和解析>>

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

精英家教网A.(不等式选做题)
函数f(x)=x2-x-a2+a+1对于任一实数x,均有f(x)≥0.则实数a满足的条件是
 

B.(几何证明选做题)
如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
3
,AB=BC=4,则AC的长为
 

C.(坐标系与参数方程选做题)
在极坐标系中,曲线ρ=4cos(θ-
π
3
)
上任意两点间的距离的最大值为
 

查看答案和解析>>

精英家教网A.不等式
x-2
x2+3x+2
>0
的解集是
 

B.如图,AB是⊙O的直径,P是AB延长线上的一点,过P作⊙O的切线,切点为CPC=2
3
,若∠CAP=30°,则⊙O的直径AB=
 

C.(极坐标系与参数方程选做题)若圆C:
x=1+
2
cosθ
y=2+
2
sinθ
(θ为参数)
与直线x-y+m=0相切,则m=
 

查看答案和解析>>

精英家教网A.(不等式选做题)不等式|3x-6|-|x-4|>2x的解集为
 


B.(几何证明选做题)如图,直线PC与圆O相切于点C,割线PAB经过圆心O,
弦CD⊥AB于点E,PC=4,PB=8,则CE=
 

C.(坐标系与参数方程选做题)在极坐标系中,圆ρ=4cosθ的圆心到直线ρsin(θ+
π
4
)=2
2
的距离为
 

查看答案和解析>>

一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,选择一个符合题目要求的选项.

(1)C    (2)B    (3)D    (4)C     (5)B    (6)B   

(7)A    (8)C    (9)B    (10)D   (11)A    (12)B

二、填空题:本大题共4小题,每小题4分,共16分. 答案填在题中横线上.

13. 如果一个二面角的两个面与另一个二面角的两个面分别垂直,则这两个二面角相等或互补     假     14.   15. 0     16.

三、解答题:本大题共6小题,共74分. 解答应写出文字说明、证明过程或演算步骤.

17. 解:(Ⅰ)………2分

………4分

………6分

 (II)

   ……8分

的图象与x轴正半轴的第一个交点为  ………10分

所以的图象、y轴的正半轴及x轴的正半轴三者围成图形的面积

=    …12分

18. 解:(Ⅰ)设摇奖一次,获得一、二、三、四、五等奖的事件分别记为.

则其概率分别为……3分

设摇奖一次支出的学习用品相应的款项为,则的分布列为:

 

1

2

3

4

5

 

 

 

                                                  

.………6分

若捐款10元者达到1500人次,那么购买学习用品的款项为(元),

除去购买学习用品的款项后,剩余款项为(元),

故剩余款项可以帮助该生完成手术治疗. ………8分

(II)记事件“学生甲捐款20元获得价值6元的学习用品”为,则.

即学生甲捐款20元获得价值6元的学习用品的概率为………12分

19. 以D为原点,以DA、DC、DD1所在直线分别为x轴,z轴建立空间直角坐标系D―xyz如图,则有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). …  3分

(Ⅰ)证明:设则有所以,∴平面;………6分

(II)解:

为平面的法向量,

于是………8分

同理可以求得平面的一个法向量,………10分

  ∴二面角的余弦值为. ………12分

20. 解:(Ⅰ)对求导数,得,切点是的切线方程是.…2分

时,切线过点,即,得;

时,切线过点,即,得.

所以数列是首项,公比为的等比数列,

所以数列的通项公式为.………4分

(II)当时,数列的前项和=

同乘以,得=两式相减,…………8分

=

所以=.………12分

21.解:(Ⅰ)由于所以

………2分

,

当a=2时,

所以2-a≠0.

①     当2-a>0,即a<2时,的变化情况如下表1:

 

x

0

(0,2-a)

2-a

(2-a,+∞)

0

+

0

极小值

极大值

此时应有f(0)=0,所以a=0<2;

②当2-a<0,即a>2时,的变化情况如下表2:

x

2-a

(2-a,0)

0

(0,+∞)

0

+

0

极小值

极大值

此时应有

综上可知,当a=0或4时,的极小值为0. ………6分

(II)若a<2,则由表1可知,应有 也就是

由于a<2得

所以方程  无解. ………8分

若a>2,则由表2可知,应有f(0)=3,即a=3. ………10分

综上可知,当且仅当a=3时,f(x)的极大值为3. ………12分

22. 解:(Ⅰ)由得,;……4分

由直线与圆相切,得,所以,。所以椭圆的方程是.……4分

(II)由条件知,,即动点到定点的距离等于它到直线的距离,由抛物线的定义得点的轨迹的方程是.  ……8分

(III)由(2)知,设,所以.

,得.因为,化简得,……10分

(当且仅当,即时等号成立). ……12分    ,又

所以当,即时,,故的取值范围是.14分

 

 

 

 

 


同步练习册答案