(Ⅱ)连取3次.求取到白球个数的分布列的数学期望. 查看更多

 

题目列表(包括答案和解析)

一个口袋内有)个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是
(I)当时,不放回地从口袋中随机取出3个球,求取到白球的个数的期望
(II)若,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于,求

查看答案和解析>>

 一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.

 

 

查看答案和解析>>

口袋内有n(n>3)个大小相同的球,其中有3个红球和n-3个白球,已知从口袋中随机取出一个球是红球的概率是p,且6p∈N.若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于数学公式
(Ⅰ)求p和n;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记ξ为第一次取到白球时的取球次数,求ξ的分布列和期望Eξ.

查看答案和解析>>

口袋内有n(n>3)个大小相同的球,其中有3个红球和n-3个白球,已知从口袋中随机取出一个球是红球的概率是p,且6p∈N.若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于
(Ⅰ)求p和n;
(Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记ξ为第一次取到白球时的取球次数,求ξ的分布列和期望Eξ.

查看答案和解析>>

(本小题满分12分)

一个口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是

(1)当时,不放回地从口袋中随机取出3个球,求取到白球的个数的期望

(2)若,有放回地从口袋中连续地取四次球(每次只取一个球),在四次摸球中恰好取到两次红球的概率大于,求

 

查看答案和解析>>


同步练习册答案