16.在椭圆中.为过左焦点的弦.且.则椭圆的离心率 . 查看更多

 

题目列表(包括答案和解析)

在给定椭圆中,过左焦点且垂直于长轴的弦长为,焦点到直线x=的距离为1,则该椭圆的离心率为

[  ]
A.

B.

C.

D.

查看答案和解析>>

已知椭圆的中心在原点,左焦点F1(-2,0),过左焦点且垂直于长轴的弦长为
2
6
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>

已知椭圆C的中心坐标原点,F1、F2分别为它的左、右焦点,直线x=4为它的一条准线,又知椭圆C上存在点M使2
MF1
-
MF2
=|
MF1
|•|
MF2
|•|
MF1
|=|
MF2
|

(1)求椭圆C的方程;
(2)若PQ为过椭圆焦点F2的弦,且
PF2
F2Q
,求△PF1Q
内切圆面积最大时实数λ的值.

查看答案和解析>>

已知椭圆的中心在原点,左焦点F1(-2,0),过左焦点且垂直于长轴的弦长为
2
6
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>


(12分)已知椭圆的中心在原点,准线为如果直线与椭圆的交点在x轴上的射影恰为椭圆的焦点
(1)求椭圆方程
(2)求过左焦点F1且与直线平行的弦EF的中点坐标

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

C

B

C

C

B

B

C

 

二、填空题

13.()  14.x=0或y=0     15.4     16.2/3    17.20   18.①④

 

三、解答题

19.解:A(―4,2)关于直线对称的点为,因为直线的平分线,可以点在直线上,故直线的方程是,由,则是以为直角的三角形,10

 

20.解:由,设双曲线方程为,椭圆方程为,它们的焦点,则

*,又双曲线方程为,椭圆方程为

 

21.解:,设椭圆方程为①,设过的直线方程为②,将②代入①得③,设的中点为代入,由③,解得

 

22.解:⑴设直线方程为:代入,得

,另知直线与半圆相交的条件为,设,则,点位于的右侧,应有,即(亦可求出的横坐标

⑵若为正,则点到直线距离

矛盾,在⑴条件下不可能是正△.

 

文本框: F223.⑴由题意设椭圆方程为:,则解得: ,所以椭圆方程为:

⑵设“左特征点”,设的平分线,,下面设直线的方程为,代入得:代入上式得解得

⑶椭圆的“左特征点”M是椭圆的左准线和x轴的交点证明如下:

证明:设椭圆的左准线与x轴相交于点M,过点A、B分别作的垂线,垂足分别为点C、D。据椭圆第二定义得

,∴

均为锐角,∴

。∴的平分线。故点为椭圆的“左特征点”。


同步练习册答案