题目列表(包括答案和解析)
A、无法确定 | ||
B、
| ||
C、
| ||
D、
|
A.无法确定 B. C. D.
双曲线的左焦点为,顶点为,是该双曲线右支上任意一点,则分别以线段为直径的两圆一定( )
(A)相交 (B)内切 (C)外切 (D)相离
双曲线的左焦点为,顶点为、,是该双曲线右支上任意一点,则分别以线段、为直径的两圆的位置关系是
A.相交 | B.内切 | C.外切 | D.相离 |
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
B
C
C
A
C
B
C
C
B
B
C
二、填空题
13.() 14.x=0或y=0 15.4 16.2/3 17.20 18.①④
三、解答题
19.解:A(―4,2)关于直线:对称的点为,因为直线是中的平分线,可以点在直线上,故直线的方程是,由,,则是以为直角的三角形,,10
20.解:由,,设双曲线方程为,椭圆方程为,它们的焦点,则
,又,,双曲线方程为,椭圆方程为
21.解:,设椭圆方程为①,设过和的直线方程为②,将②代入①得-③,设,的中点为代入,,,由③,,解得
22.解:⑴设直线方程为:代入,得
,另知直线与半圆相交的条件为,设,则,,点位于的右侧,应有,即,(亦可求出的横坐标)
⑵若为正,则点到直线距离
与矛盾,在⑴条件下不可能是正△.
23.⑴由题意设椭圆方程为:,则解得: ,所以椭圆方程为:
⑵设“左特征点”,设,为的平分线,,,下面设直线的方程为,代入得:,代入上式得解得
⑶椭圆的“左特征点”M是椭圆的左准线和x轴的交点证明如下:
证明:设椭圆的左准线与x轴相交于点M,过点A、B分别作的垂线,垂足分别为点C、D。据椭圆第二定义得,
∵∥∥,∴,
∴∵与均为锐角,∴。
∴。∴为的平分线。故点为椭圆的“左特征点”。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com