(2)若的最大值为正数.求a的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数数学公式
(1)若函数f(x)在[1,+∞)上为递增函数,求正实数a的取值范围;
(2)当a=1时,求函数f(x)在数学公式上的最大值和最小值;
(3)试比较数学公式数学公式的大小,并说明理由.

查看答案和解析>>

已知函数数学公式,函数f(x)在数学公式处取得极值.
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

已知函数,函数f(x)在处取得极值.
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

已知函数,函数f(x)在处取得极值.
(1)求实数a的值;
(2)若b≤2,t<0,函数f(x)在[t,e](e为自然对数的底数)上的最大值为2,求实数t的取值范围;
(3)对任意给定的正实数b,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

已知函数
(1)若函数f(x)在[1,+∞)上为递增函数,求正实数a的取值范围;
(2)当a=1时,求函数f(x)在上的最大值和最小值;
(3)试比较的大小,并说明理由.

查看答案和解析>>

ABCACDCCDB

 2           

        (2,1)È(1,2)     -2

17、解:(Ⅰ)

         

(Ⅱ)

     

18、[解](1)

 

 

 

 

 

 

 

 

 

 

            

      (2)方程的解分别是,由于上单调递减,在上单调递增,因此

.                        

    由于.                         

  19、解:(Ⅰ)

由方程    ②

因为方程②有两个相等的根,所以

即 

由于代入①得的解析式

   (Ⅱ)由

解得

故当的最大值为正数时,实数a的取值范围是

 

20、解:(Ⅰ)设函数的图象上任意一点关于原点的对称点为,则

∵点在函数的图象上

(Ⅱ)由

时,,此时不等式无解

时,,解得

因此,原不等式的解集为

21、解: (Ⅰ)由原式得

           ∴

(Ⅱ)由,此时有.

或x=-1 , 又

    所以f(x)在[--2,2]上的最大值为最小值为

   (Ⅲ)解法一: 的图象为开口向上且过点(0,--4)的抛物线,由条件得

   

     即  ∴--2≤a≤2.

     所以a的取值范围为[--2,2].

  解法二:令 由求根公式得:

    所以上非负.

   由题意可知,当x≤-2或x≥2时, ≥0,

  从而x1≥-2,  x2≤2,

   即 解不等式组得: --2≤a≤2.

∴a的取值范围是[--2,2].

 

 


同步练习册答案