在Rt△APD中.由AD=5.得 ().(2)由. 查看更多

 

题目列表(包括答案和解析)

(2012•绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?
(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC-AA1=
2.52-0.72
-0.4=2
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1
B
2
1
得方程
(x+0.7)2+22=2.52
(x+0.7)2+22=2.52

解方程得x1=
0.8
0.8
,x2=
-2.2(舍去)
-2.2(舍去)

∴点B将向外移动
0.8
0.8
米.
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题.

查看答案和解析>>

答案:(1)如图

(2)答:这条船继续前进,没有被浅滩阻碍的危险。

解:作CD⊥直线AB于点D

         由已知可得∠CAD=30°, ∠CBD=45°,

         AB=100米。

         设CD=米。

         在RtACD

         tanCAD=

         ∴AD=

          在RtCBD

         ∵∠CBD=45°, ∴BD=CD=x

         ∵AD-BD=AB, ∴

         解得

∴这条船继续前进没有被浅滩阻碍的危险。

查看答案和解析>>

先阅读下面的材料,再解答下面的各题.
在平面直角坐标系中,有AB两点,A(x1,y1)、B(x2,y2)两点间的距离用|AB|表示,则有|AB|=
(x1-x2)2+(y1-y2)2
,下面我们来证明这个公式:证明:如图1,过A点作X轴的垂线,垂足为C,则C点的横坐标为x1,过B点作X轴的垂线,垂足为D,则D点的横坐标为x2,过A点作BD的垂线,垂足为E,则E点的横坐标为x2,纵坐标为y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=
(x1-x2)2+(y1-y2)2
(因为|AB|表示线段长,为非负数)
注:当A、B在其它象限时,同理可证上述公式成立.
(1)在平面直角坐标系中有P(4,6)、Q(2,-3)两点,求|PQ|.
(2)如图2,直线L1与L2相交于点C(4,6),L1、L2与X轴分别交于B、A两点,其坐标B(8,0)、A(1,0),直线L3平行于X轴,与L1、L2分别交于E、D两点,且|DE|=
6
7
,求线段|DA|的长.
精英家教网

查看答案和解析>>

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程                                   
解方程得x1=         ,x2=                   
∴点B将向外移动         米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题。

查看答案和解析>>

先阅读下面的材料,再解答下面的各题.
在平面直角坐标系中,有AB两点,A(x1,y1)、B(x2,y2)两点间的距离用|AB|表示,则有|AB|=数学公式,下面我们来证明这个公式:证明:如图1,过A点作X轴的垂线,垂足为C,则C点的横坐标为x1,过B点作X轴的垂线,垂足为D,则D点的横坐标为x2,过A点作BD的垂线,垂足为E,则E点的横坐标为x2,纵坐标为y1.∴|AE|=|CD|=|x1-x2|
|BE|=|BD|-|DE|=|y2-y1|=||y1-y2|
在Rt△AEB中,由勾股定理得|AB|2=|AE|2+|BE|2=|x1-x2|2+|y1-y2|2
∴|AB|=数学公式(因为|AB|表示线段长,为非负数)
注:当A、B在其它象限时,同理可证上述公式成立.
(1)在平面直角坐标系中有P(4,6)、Q(2,-3)两点,求|PQ|.
(2)如图2,直线L1与L2相交于点C(4,6),L1、L2与X轴分别交于B、A两点,其坐标B(8,0)、A(1,0),直线L3平行于X轴,与L1、L2分别交于E、D两点,且|DE|=数学公式,求线段|DA|的长.

查看答案和解析>>


同步练习册答案
鍏� 闂�