1已知正项等比数列中.不等式一定成立, 查看更多

 

题目列表(包括答案和解析)

设等比数列{an}的前n项和为Sn,已知数学公式
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

设等比数列{an}的前n项和为Sn,已知
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列(如:在a1与a2之间插入1个数构成第一个等差数列,其公差为d1;在a2与a3之间插入2个数构成第二个等差数列,其公差为d2,…以此类推),设第n个等差数列的和是An.是否存在一个关于n的多项式g(n),使得An=g(n)dn对任意n∈N*恒成立?若存在,求出这个多项式;若不存在,请说明理由;
(3)对于(2)中的数列d1,d2,d3,…,dn,…,这个数列中是否存在不同的三项dm,dk,dp(其中正整数m,k,p成等差数列)成等比数列,若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

已知命题:
①已知正项等比数列{an}中,不等式an+1+an-1≥2an(n≥2,n∈N*)一定成立;
②若F(n)=(n+1)(n+2)(n+3)…(n+n)(n∈N*),则F(1)=2,F(2)=24;
③已知数列{an}中,an=n2+λn+1(λ∈R).若λ>-3,则恒有an+1>an(n∈N*);
④公差小于零的等差数列{an}的前n项和为Sn.若S20=S40,则S30为数列{Sn}的最大项;以上四个命题正确的是
①③④
①③④
(填入相应序号)

查看答案和解析>>

已知函数f(x)=
-2x+3
2x-7
,若存在实数x0,使f(x0)=x0则称x0是函数y=f(x)的一个不动点.
(I)证明:函数y=f(x)有两个不动点;
(II)已知a、b是y=f(x)的两个不动点,且a>b.当x≠-
1
2
7
2
时,比较
f(x)-a
f(x)-b
8(x-a)
x-b
的大小;
(III)在数列{an}中,a1≠-
1
2
且an
7
2
,a1=1,等式an+1=f(an)对任何正整数n都成立,求数列{an}的通项公式.

查看答案和解析>>


同步练习册答案