题目列表(包括答案和解析)
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.
⑴ 若cosA=-,求cosC的值; ⑵ 若AC=,BC=5,求△ABC的面积.
【解析】第一问中sinB==, sinA==
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=×-(-)×=
第二问中,由=+-2AB×BC×cosB得 10=+25-8AB
解得AB=5或AB=3综合得△ABC的面积为或
解:⑴ sinB==, sinA==,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=×-(-)×= ……………………6分
⑵ 由=+-2AB×BC×cosB得 10=+25-8AB ………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,则S△ABC=AB×BC×sinB=×5×5×= ………………10分
若AB=3,则S△ABC=AB×BC×sinB=×5×3×=……………………11分
综合得△ABC的面积为或
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式.
解:∵,
∴.
由有理数的乘法法则“两数相乘,同号得正”,有
(1) (2)
解不等式组(1),得,
解不等式组(2),得,
故的解集为或,
即一元二次不等式的解集为或.
问题:求分式不等式的解集.
先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式.
解:∵,
∴.
由有理数的乘法法则“两数相乘,同号得正”,有
(1) (2)
解不等式组(1),得,
解不等式组(2),得,w.w.w.k.s.5.u.c.o.m
故的解集为或,
即一元二次不等式的解集为或.
问题:求分式不等式的解集.为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高频数分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
频数 |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求该校男生的人数并完成下面频率分布直方图;
(II)估计该校学生身高在的概率;
(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。
【解析】第一问样本中男生人数为40 ,
由分层抽样比例为10%可得全校男生人数为400
(2)中由表1、表2知,样本中身高在的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在的频率
故由估计该校学生身高在的概率
(3)中样本中身高在180185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图,故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率
由表1、表2知,样本中身高在的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在
的频率-----------------------------------------6分
故由估计该校学生身高在的概率.--------------------8分
(3)样本中身高在180185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图为:
--10分
故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率
已知点(),过点作抛物线的切线,切点分别为、(其中).
(Ⅰ)若,求与的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;
(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值
(Ⅰ)由可得,. ------1分
∵直线与曲线相切,且过点,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,则的斜率,
∴直线的方程为:,又,
∴,即. -----------------7分
∵点到直线的距离即为圆的半径,即,--------------8分
故圆的面积为. --------------------9分
(Ⅲ)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即, ………10分
∴
,
当且仅当,即,时取等号.
故圆面积的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com