题目列表(包括答案和解析)
如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;
(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.
【解析】第一问中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
解
(Ⅰ) 证明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,
因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,
又EH//PO,所以EH平面ABC ,
则为直线AE与底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已证平面PBC,所以,即,
故,
于是
所以直线AE与底面ABC 所成角的正弦值为
(本小题满分12分)如图,在矩形中,,又⊥平面,.
(Ⅰ)若在边上存在一点,使,
求的取值范围;
(Ⅱ)当边上存在唯一点,使时,
求二面角的余弦值.
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B—PD—C的正切值。
【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二问中解:取PD的中点E,连接CE、BE,
为正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,
∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。
如图所示,已知直线与不共面,直线,直线,又平面,平面,平面,求证:三点不共线.
.(本小题满分12分)如图,在矩形中,,又⊥平面,.
(Ⅰ)若在边上存在一点,使,
求的取值范围;
(Ⅱ)当边上存在唯一点,使时,
求二面角的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com