解得 1 查看更多

 

题目列表(包括答案和解析)

解不等式
x2+2x-3-x2+x+6
<0所得解集是
{x|x<-3或-2<x<1或x>3}
{x|x<-3或-2<x<1或x>3}

查看答案和解析>>

(1)已知函数f(x)=x2,g(x)为一次函数,且为增函数,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=x2+2x,求f(x);

(4)某工厂生产一种机器的固定成本为5 000元,且每生产100部,需要增加投入2 500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为H(x)=500x-x2,其中x是产品售出的数量,且0≤x≤500.若x为年产量,y表示利润,求y=f(x)的解析式.

查看答案和解析>>

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

15.解:根据条件去画满足条件的二次函数图象就可判断出

某大型超市为促销商品,特举办“购物摇奖100%中奖”活动,凡消费者在该超市购物满20元,享受一次摇奖机会,购物满40元,享受两次摇奖机会,依次类推。摇奖机的旋转圆盘是均匀的,扇形区域A、B、C、D、E所对应的圆心角的比值分别为1:2:3:4:5。相应区域分别设立一、二、三、四、五等奖,奖金分别为5元、4元、3元、2元、1元。求某人购物30元,获得奖金的分布列.

查看答案和解析>>


同步练习册答案