当变化时.的变化情况如下表: 查看更多

 

题目列表(包括答案和解析)

受日月引力影响,海水会发生涨退潮现象.通常情况下,船在涨潮时驶进港口,退潮时离开港口.某港口在某季节每天港口水位的深度(米)是时间,单位:小时,表示0:00—零时)的函数,其函数关系式为.已知一天中该港口水位的深度变化有如下规律:出现相邻两次最高水位的深度的时间差为12小时,最高水位的深度为12米,最低水位的深度为6米,每天13:00时港口水位的深度恰为10.5米.
(1)试求函数的表达式;
(2)某货船的吃水深度(船底与水面的距离)为7米,安全条例规定船舶航行时船底与海底的距离不小于3.5米是安全的,问该船在当天的什么时间段能够安全进港?若该船欲于当天安全离港,则它最迟应在当天几点以前离开港口?

查看答案和解析>>

受日月引力影响,海水会发生涨退潮现象.通常情况下,船在涨潮时驶进港口,退潮时离开港口.某港口在某季节每天港口水位的深度(米)是时间,单位:小时,表示0:00—零时)的函数,其函数关系式为.已知一天中该港口水位的深度变化有如下规律:出现相邻两次最高水位的深度的时间差为12小时,最高水位的深度为12米,最低水位的深度为6米,每天13:00时港口水位的深度恰为10.5米.
(1)试求函数的表达式;
(2)某货船的吃水深度(船底与水面的距离)为7米,安全条例规定船舶航行时船底与海底的距离不小于3.5米是安全的,问该船在当天的什么时间段能够安全进港?若该船欲于当天安全离港,则它最迟应在当天几点以前离开港口?

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案