20.武汉某中学2009年元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽奖翻开一个数字,数字背面写有所中奖品或新年祝词.123456789奖MP4一个万事如意学业进步身体健康新年快乐奖MP3一个奖笔记本一个奖钢笔一支心想事成 (1)主持人想知道“第一个人抽奖中奖 的概率,而且觉得翻版牌太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖 的概率.(2)若晚会开始前给每名入场的学生发一张入场券,其中有100张后标有“新年快乐 .晚会进行中主持人任意邀请台下50名同学上台合唱“同一首歌 ,并宣布这50名同学的入场券后标有“新年快乐 的参与抽奖,结果有4人中奖,中奖率为40%,请估计参加本次晚会的学生人数. 查看更多

 

题目列表(包括答案和解析)

武汉某中学2009年元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽奖翻开一个数字,数字背面写有所中奖品或新年祝词.
 1
 4  5  6
 7  9
 奖MP4一个 万事如意   学业进步
 身体健康  新年快乐  奖MP4一个
 奖笔记本一个  奖钢笔一个  心想事成
(1)主持人想知道“第一个人抽奖中奖”的概率,而且觉得翻版牌太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖”的概率;
(2)若晚会开始前给每名入场的学生发一张入场券,其中有100张后标有“新年快乐”.晚会进行中主持人任意邀请台下50名同学上台合唱“同一首歌”,并宣布这50名同学的入场券后标有“新年快乐”的参与抽奖,结果有4人中奖,中奖率为40%,请估计参加本次晚会的学生人数.

查看答案和解析>>

武汉某中学2009年元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽奖翻开一个数字,数字背面写有所中奖品或新年祝词.
12 3
4 5 6
78 9
奖MP4一个万事如意 学业进步
身体健康 新年快乐 奖MP4一个
奖笔记本一个 奖钢笔一个 心想事成
(1)主持人想知道“第一个人抽奖中奖”的概率,而且觉得翻版牌太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖”的概率;
(2)若晚会开始前给每名入场的学生发一张入场券,其中有100张后标有“新年快乐”.晚会进行中主持人任意邀请台下50名同学上台合唱“同一首歌”,并宣布这50名同学的入场券后标有“新年快乐”的参与抽奖,结果有4人中奖,中奖率为40%,请估计参加本次晚会的学生人数.

查看答案和解析>>

武汉某中学2009年元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽奖翻开一个数字,数字背面写有所中奖品或新年祝词.
 1
 4 5 6
 7 9
 奖MP4一个万事如意  学业进步
 身体健康 新年快乐 奖MP4一个
 奖笔记本一个 奖钢笔一个 心想事成
(1)主持人想知道“第一个人抽奖中奖”的概率,而且觉得翻版牌太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖”的概率;
(2)若晚会开始前给每名入场的学生发一张入场券,其中有100张后标有“新年快乐”.晚会进行中主持人任意邀请台下50名同学上台合唱“同一首歌”,并宣布这50名同学的入场券后标有“新年快乐”的参与抽奖,结果有4人中奖,中奖率为40%,请估计参加本次晚会的学生人数.

查看答案和解析>>

武汉某中学2009年元旦晚会上,主持人安排了抽奖活动.具体方法是:设置如下表所示的翻板,每次抽奖翻开一个数字,数字背面写有所中奖品或新年祝词.
 1
 4 5 6
 7 9
 奖MP4一个万事如意  学业进步
 身体健康 新年快乐 奖MP4一个
 奖笔记本一个 奖钢笔一个 心想事成
(1)主持人想知道“第一个人抽奖中奖”的概率,而且觉得翻版牌太麻烦,请你设计一个简便的模拟抽奖方法,并估计“第一个人抽奖中奖”的概率;
(2)若晚会开始前给每名入场的学生发一张入场券,其中有100张后标有“新年快乐”.晚会进行中主持人任意邀请台下50名同学上台合唱“同一首歌”,并宣布这50名同学的入场券后标有“新年快乐”的参与抽奖,结果有4人中奖,中奖率为40%,请估计参加本次晚会的学生人数.

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 证明:如图,因为 AB∥CN

所以   在中  

                  

 ≌       

      是平行四边形    

20.(1)  (2)500

21.(1)(-1,4),;(2)

(3)直线轴的交点B(4,0),与轴交于点C(0,8),

绕P(-1,0)顺时针旋转90°后的对应点(-1, -5),(7,-1),

设直线的函数解析式为

 

22.略(2)

23.的整数

(2)   得,当x=24时,利润最大是3880

24.解:(1)BE=AD

证明:∵△ABC与△DCE是等边三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋转方法证明BE=AD)

(2)设经过x秒重叠部分的面积是,如图在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因为0≤x≤3,所以x=1

答:经过1秒重叠部分的面积是

(3)C′N?E′M的值不变

证明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)联立得A(-2,-1)C(1,2)

设P(a,0),则Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步练习册答案