21.已知点A(2.)在直线上. 查看更多

 

题目列表(包括答案和解析)

已知点(x1,y1)和(x2,y2)都在直线y=
34
x-1上,若x1<x2,则y1
 
y2

查看答案和解析>>

已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-
13
x+b上,则y1,y2,y3的值的大小关系是
 

查看答案和解析>>

13、已知点(x1,y1)、(x2,y2)、…、(xn,yn)都在直线y=3x-5上,若这n个点的横坐标的平均数为a,则这n个点的纵坐标的平均数为
3a-5
.(用a的代数式表示)

查看答案和解析>>

(1)在直线l上顺次取A、B、C三点,使得AB=4cm,BC=3cm.如果O是线段AC的中点,求线段OB的长度.
(2)已知∠α的余角等于15°,求∠α的补角.

查看答案和解析>>

已知点(-4,y1)(2,y2)都在直线y=-x+2上,则y1,y2大小关系是(  )

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 证明:如图,因为 AB∥CN

所以   在中  

                  

 ≌       

      是平行四边形    

20.(1)  (2)500

21.(1)(-1,4),;(2)

(3)直线轴的交点B(4,0),与轴交于点C(0,8),

绕P(-1,0)顺时针旋转90°后的对应点(-1, -5),(7,-1),

设直线的函数解析式为

 

22.略(2)

23.的整数

(2)   得,当x=24时,利润最大是3880

24.解:(1)BE=AD

证明:∵△ABC与△DCE是等边三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋转方法证明BE=AD)

(2)设经过x秒重叠部分的面积是,如图在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因为0≤x≤3,所以x=1

答:经过1秒重叠部分的面积是

(3)C′N?E′M的值不变

证明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)联立得A(-2,-1)C(1,2)

设P(a,0),则Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步练习册答案