题目列表(包括答案和解析)
k |
x |
2 |
有两张完全重合的矩形纸片,小亮将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连结BD、MF,此时他测得BD=8cm,∠ADB=30°.
1.在图1中,请你判断直线FM和BD是否垂直?并证明你的结论;
2.小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
3.若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少.
有两张完全重合的矩形纸片,小亮将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连结BD、MF,此时他测得BD=8cm,∠ADB=30°.
【小题1】在图1中,请你判断直线FM和BD是否垂直?并证明你的结论;
【小题2】小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
【小题3】若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少.
1-6:CCABAD 7――12:BBDACC
13.7 14. 15. 16.-4 17.
18.x-2
19. 证明:如图,因为 AB∥CN
所以 在和中
≌
是平行四边形
20.(1) (2)500
21.(1)(-1,4),;(2);
(3)直线与轴的交点B(4,0),与轴交于点C(0,8),
绕P(-1,0)顺时针旋转90°后的对应点(-1, -5),(7,-1),
设直线的函数解析式为,
22.略(2)
23.的整数
(2) 得,当x=24时,利润最大是3880
24.解:(1)BE=AD
证明:∵△ABC与△DCE是等边三角形
∴∠ACB=∠DCE=60° CA=CB,CE=CD
∴∠BCE=∠ACD ∴△BCE≌△ACD
∴ BE=AD(也可用旋转方法证明BE=AD)
(2)设经过x秒重叠部分的面积是,如图在△CQT中
∵∠TCQ=30° ∠RQP=60°
∴∠QTC=30° ∴∠QTC=∠TCQ ∴QT=QC=x∴ RT=3-x
∵∠RTS+∠R=90° ∴∠RST=90°
由已知得×32 -(3-x)2=
x=1,x=5,因为0≤x≤3,所以x=1
答:经过1秒重叠部分的面积是
(3)C′N?E′M的值不变
证明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°
∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′
∵∠E′=∠C′ ∴△E′MC∽△C′CN
∴ ∴C′N?E′M=C′C?E′C=×=
25.(1)
(2)联立得A(-2,-1)C(1,2)
设P(a,0),则Q(4+a,2)
∴
∴
∴Q(-3,2)或(1,2)
(3)∵△AND~△RON,∴
∵△ONS~△DNO,∴
∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com