24.图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起.(1)操作:固定△ABC.将△C′D′E′绕点C顺时针旋转30°得到△CDE.连结AD.BE.CE的延长线交AB于F(图2),探究:在图2中.线段BE与AD之间有怎样的大小关系?试证明你的结论.(2)操作:将图2中的△CDE.在线段CF上沿着CF方向以每秒1个单位的速度平移.平移后的△CDE设为△PQR(图3), 查看更多

 

题目列表(包括答案和解析)

图1是边长分别为数学公式和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

图1是边长分别为和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连接AD,BE,CE的延长线交AB于F(图2).
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论;
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3).
探究:设△PQR移动的时间为x秒,△PQR与△AFC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(  )
A、B、C、D、

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 证明:如图,因为 AB∥CN

所以   在中  

                  

 ≌       

      是平行四边形    

20.(1)  (2)500

21.(1)(-1,4),;(2)

(3)直线轴的交点B(4,0),与轴交于点C(0,8),

绕P(-1,0)顺时针旋转90°后的对应点(-1, -5),(7,-1),

设直线的函数解析式为

 

22.略(2)

23.的整数

(2)   得,当x=24时,利润最大是3880

24.解:(1)BE=AD

证明:∵△ABC与△DCE是等边三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋转方法证明BE=AD)

(2)设经过x秒重叠部分的面积是,如图在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因为0≤x≤3,所以x=1

答:经过1秒重叠部分的面积是

(3)C′N?E′M的值不变

证明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)联立得A(-2,-1)C(1,2)

设P(a,0),则Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步练习册答案