(2)P为x轴负半轴上一点.以AP.AC为边作.是否存在P.使得Q点恰好在此抛物线上?若存在.请求出P.Q的坐标,若不存在.请说明理由. (3)AD⊥X轴于D.以OD为直径作⊙M.N为⊙M上一动点..过N作AN的垂线交x轴于R点.DN交Y轴于点S.当N点运动时.线段OR.OS是否存在确定的数量关系?写出证明. 查看更多

 

题目列表(包括答案和解析)

抛物线与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且

(1)求抛物线的解析式。

(2)P为x轴负半轴上一点,以AP、AC为边作,是否存在P,使得Q点恰好在此抛物线上?若存在,请求出P、Q的坐标;若不存在,请说明理由。

(3)AD⊥X轴于D,以OD为直径作⊙M,N为⊙M上一动点,(不与O、D重合),过N作AN的垂线交x轴于R点,DN交Y轴于点S,当N点运动时,线段OR、OS是否存在确定的数量关系?写出证明。

查看答案和解析>>

抛物线y=ax2+2ax+b与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且S△ABC=3,(1)求抛物线的解析式.

(2)P为x轴负半轴上一点,以AP、AC为边作CAPQ,是否存在P,使得Q点恰好在此抛物线上?若存在,请求出P、Q的坐标;若不存在,请说明理由.

(3)AD⊥X轴于D,以OD为直径作⊙M,N为⊙M上一动点,(不与O、D重合),过N作AN的垂线交x轴于R点,DN交Y轴于点S,当N点运动时,线段OR、OS是否存在确定的数量关系?写出证明.

查看答案和解析>>

抛物线y=ax2+2ax+b与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且S△ABC=3,A点坐标为(-2,b).
精英家教网精英家教网
(1)求抛物线的解析式;
(2)P为x轴负半轴上一点,以AP、AC为边作平行四边形CAPQ,是否存在P,使得Q点恰好在此抛物线上?若存在,请求出P、Q的坐标;若不存在,请说明理由;
(3)AD⊥x轴于D,以OD为直径作⊙M,N为⊙M上一动点,(不与O、D重合),过N作AN的垂线交x轴于R点,DN交y轴于点S,当N点运动时,线段OR、OS是否存在确定的数量关系写出证明.

查看答案和解析>>

抛物线y=ax2+2ax+b与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且S△ABC=3,A点坐标为(-2,b).

(1)求抛物线的解析式;
(2)P为x轴负半轴上一点,以AP、AC为边作平行四边形CAPQ,是否存在P,使得Q点恰好在此抛物线上?若存在,请求出P、Q的坐标;若不存在,请说明理由;
(3)AD⊥x轴于D,以OD为直径作⊙M,N为⊙M上一动点,(不与O、D重合),过N作AN的垂线交x轴于R点,DN交y轴于点S,当N点运动时,线段OR、OS是否存在确定的数量关系写出证明.

查看答案和解析>>

抛物线y=ax2+2ax+b与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且S△ABC=3,A点坐标为(-2,b).

(1)求抛物线的解析式;
(2)P为x轴负半轴上一点,以AP、AC为边作平行四边形CAPQ,是否存在P,使得Q点恰好在此抛物线上?若存在,请求出P、Q的坐标;若不存在,请说明理由;
(3)AD⊥x轴于D,以OD为直径作⊙M,N为⊙M上一动点,(不与O、D重合),过N作AN的垂线交x轴于R点,DN交y轴于点S,当N点运动时,线段OR、OS是否存在确定的数量关系写出证明.

查看答案和解析>>

1-6:CCABAD  7――12:BBDACC

13.7   14.   15.   16.-4    17.

18.x-2

19. 证明:如图,因为 AB∥CN

所以   在中  

                  

 ≌       

      是平行四边形    

20.(1)  (2)500

21.(1)(-1,4),;(2)

(3)直线轴的交点B(4,0),与轴交于点C(0,8),

绕P(-1,0)顺时针旋转90°后的对应点(-1, -5),(7,-1),

设直线的函数解析式为

 

22.略(2)

23.的整数

(2)   得,当x=24时,利润最大是3880

24.解:(1)BE=AD

证明:∵△ABC与△DCE是等边三角形

∴∠ACB=∠DCE=60° CA=CB,CE=CD

∴∠BCE=∠ACD  ∴△BCE≌△ACD    

∴ BE=AD(也可用旋转方法证明BE=AD)

(2)设经过x秒重叠部分的面积是,如图在△CQT中

∵∠TCQ=30° ∠RQP=60°

∴∠QTC=30° ∴∠QTC=∠TCQ  ∴QT=QC=x∴ RT=3-x

∵∠RTS+∠R=90°    ∴∠RST=90°

由已知得×32(3-x)2=

x=1,x=5,因为0≤x≤3,所以x=1

答:经过1秒重叠部分的面积是

(3)C′N?E′M的值不变

证明:∵∠ACB=60°∴∠MCE′+∠NCC′=120°

∵∠CNC′+∠NCC′=120° ∴∠MCE′=∠CNC′

∵∠E′=∠C′   ∴△E′MC∽△C′CN

  ∴C′N?E′M=C′C?E′C=×=

 

 

25.(1)

(2)联立得A(-2,-1)C(1,2)

设P(a,0),则Q(4+a,2)

∴Q(-3,2)或(1,2)

(3)∵△AND~△RON,∴

∵△ONS~△DNO,∴

 

 


同步练习册答案