题目列表(包括答案和解析)
(本小题满分14分)
已知动圆经过点,且与圆内切.
(1)求动圆圆心的轨迹的方程;(2)求轨迹E上任意一点到定点B(1,0)的距离的最小值,并求取得最小值时的点M的坐标.
(本小题满分10分)
已知动圆过点且与直线相切.
(1)求点的轨迹的方程;
(2)过点作一条直线交轨迹于两点,轨迹在两点处的切线相交于点,为线段的中点,求证:轴.
(本小题满分10分)
已知动圆过点且与直线相切.
(1)求点的轨迹的方程;
(2)过点作一条直线交轨迹于两点,轨迹在两点处的切线相交于点,为线段的中点,求证:轴.
(本小题满分15分) 已知动圆过定点,且与直线相切,椭圆 的对称轴为坐标轴,一个焦点是,点在椭圆上.
(Ⅰ)求动圆圆心的轨迹的方程及其椭圆的方程;
(Ⅱ)若动直线与轨迹在处的切线平行,且直线与椭圆交于两点,问:是否存在着这样的直线使得的面积等于?如果存在,请求出直线的方程;如果不存在,请说明理由.
(本小题满分13分)
已知动圆过点,且与圆相内切.
(1)求动圆的圆心的轨迹方程;
(2)设直线(其中与(1)中所求轨迹交于不同两点,D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
题号
1
2
3
4
5
6
7
8
9
10
答案
D
C
B
B
C
A
D
B
A
C
二、填空题(每小题4分,共28分)
11.1+2i 12.5 13. 14. 13
15. 2或 16. 17.9
三、解答题:本大题共5小题,满分72分.解答须写出文字说明、证明过程和演算步骤.
18.(本题满分14分)
解:(1)f(x)= T=4
(2) (3)两边平方得
,而 ∴
19.(本小题满分14分)
(1)证明:∵A/O⊥面CEFB
∴EF⊥A/O,又EF⊥EC
A/O∩EC=0
∴EF⊥面A/EC
而A/C面A/EC
∴EF⊥A/C
(2)
20.(本题满分14分)
解:(1)an+1=2Sn+1,an=2Sn-1+1两式相减得an+1=3an(a≥2),又a2=2S1+1=
∴ {an}是以a1=1为首项,3为公比的等比数列,an=3n-1
(2)Tn=5n2+20n
21.(本小题满分15分)
解:(1)W:x2=6y
(2)设AC:
设A(x1,y1),C(x2,y2) |AC|=6(k2+1)
同理|BD|=6
SABCD=
当k=±1时取等号
22.(本小题满分15分)
解:(1)f(x)=ax34ax2+4ax
f/(x)=3ax28ax+
∵f(x)有极大值32,而f(2)=0 ∴f()=32=7,a=27
(2)f/(x)=a(3x2)(x2)
当a>0时,f(x)=[ 2,]上递增在[]上递减,
∴0<a<
当a<0时,f(x)在[2,]上递减,在[]上递增
f(2)=
综上
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com