(1)求数列{}的倒均数是.求数列{}的通项公式, 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的前n项的平均数的倒数为
1
2n+1

(1)求{an}的通项公式;
(2)设cn=
an
2n+1
,试判断并说明cn+1-cn(n∈N*)的符号;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,当x≤λ时,对于一切自然数n,都有f(x)≤0.

查看答案和解析>>

已知数列{an},定义其倒均数是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*

(1)求数列{an}的倒均数是Vn=
n+1
2
,求数列{an}的通项公式an
(2)设等比数列{bn}的首项为-1,公比为q=
1
2
,其倒数均为Vn,若存在正整数k,使n≥k时,Vn<-16恒成立,试求k的最小值.

查看答案和解析>>

已知数列{an}的前n项的平均数的倒数为数学公式
(1)求{an}的通项公式;
(2)设数学公式,试判断并说明cn+1-cn(n∈N*)的符号;
(3)设函数数学公式,是否存在最大的实数λ,当x≤λ时,对于一切自然数n,都有f(x)≤0.

查看答案和解析>>

已知数列{an},定义其倒均数是数学公式
(1)求数列{an}的倒均数是数学公式,求数列{an}的通项公式an
(2)设等比数列{bn}的首项为-1,公比为数学公式,其倒数均为Vn,若存在正整数k,使n≥k时,Vn<-16恒成立,试求k的最小值.

查看答案和解析>>

已知数列{an}的前n项的平均数的倒数为
1
2n+1

(1)求{an}的通项公式;
(2)设cn=
an
2n+1
,试判断并说明cn+1-cn(n∈N*)的符号;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,当x≤λ时,对于一切自然数n,都有f(x)≤0.

查看答案和解析>>

一、选择题

2,4,6

二、填空题

13.   14.3   15.-192    16. 22.2

三、解答题

17.解:(1)∵

①……………………2分

②……………………4分

联立①,②解得:……………………6分

(2)

……………………10分

……………………11分

此时……………………12分

18.解:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,

则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

   (1)∵

∴PA⊥B1D1.…………………………4分

(2)平面BDD1B­1的法向量为……………………6分

设平面PAD的法向量,则n⊥

…………………………10分

设所求锐二面角为,则

……………………12分

19.解:(1)从50名教师随机选出2名的方法数为

选出2人使用版本相同的方法数为

故2人使用版本相同的概率为:

…………………………5分

(2)∵

0

1

2

P

的分布列为

 

 

………………10分

……………………12分

可以不扣分)

20.解:(1)依题意,

两式相减得,得

……………………4分

当n=1时,

=1适合上式……………………5分

…………………………6分

(2)由题意,

………………10分

不等式恒成立,即恒成立.…………11分

经检验:时均适合题意(写出一个即可).……………………12分

21.解:(1)设

由条件知

故C的方程为:……………………4分

(2)由

…………………………5分

l与椭圆C交点为

(*)

……………………7分

消去

整理得………………9分

容易验证所以(*)成立

即所求m的取值范围为………………12分

22.(1)证明:假设存在使得

…………………………2分

上的单调增函数.……………………5分

是唯一的.……………………6分

(2)设

上的单调减函数.

……………………8分

…………10分

…………12分

为钝角

∴△ABC为钝角三角形.……………………14分

 

 


同步练习册答案