21.椭圆C的中心为坐标原点O.焦点在y轴上.离心率.椭圆上的点到焦点的最短距离为与y轴交于P点(0.m).与椭圆C交于相异两点A.B.且 (1)求椭圆方程, 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)椭圆E的中心在原点O,焦点在x轴上,离心率e=,过点C(-1,0)的直线交椭圆于A,B两点,且满足为常数。

       (1)当直线的斜率k=1且时,求三角形OAB的面积.

       (2)当三角形OAB的面积取得最大值时,求椭圆E的方程.

查看答案和解析>>

(本题满分12分)已知椭圆C的中心在原点,对称轴为坐标轴,且过

(Ⅰ)求椭圆C的方程,

(Ⅱ)直线交椭圆C与A、B两点,求证:

 

查看答案和解析>>

(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数的图像是以直线为轴,以坐标轴为渐近线的等轴双曲线,记作C.

(Ⅰ)求曲线C的离心率及焦点坐标;

(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.

(1)           (2) 

 

查看答案和解析>>

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

(本题满分12分)设椭圆C的中心在坐标原点O,焦点在x轴上,短轴长为,左焦点到左准线的距离为

(Ⅰ)求椭圆C的方程;

(Ⅱ)设椭圆C上有不同两点PQ,且OPOQ,过PQ的直线为l,求点O到直线l的距离.

查看答案和解析>>

一、选择题

2,4,6

二、填空题

13.   14.3   15.-192    16. 22.2

三、解答题

17.解:(1)∵

①……………………2分

②……………………4分

联立①,②解得:……………………6分

(2)

……………………10分

……………………11分

此时……………………12分

18.解:以D1为原点,D1A1所在直线为x轴,D1C1所在直线为y轴,D1D所在直线为z轴建立空间直角坐标系,

则D1(0,0,0),A1(2,0,0),B1(2,2,0),C1(0,2,0),D(0,0,2),A(2,0,2),B(2,2,2),C(0,2,2)P(1,1,4)………………2分

   (1)∵

∴PA⊥B1D1.…………………………4分

(2)平面BDD1B­1的法向量为……………………6分

设平面PAD的法向量,则n⊥

…………………………10分

设所求锐二面角为,则

……………………12分

19.解:(1)从50名教师随机选出2名的方法数为

选出2人使用版本相同的方法数为

故2人使用版本相同的概率为:

…………………………5分

(2)∵

0

1

2

P

的分布列为

 

 

………………10分

……………………12分

可以不扣分)

20.解:(1)依题意,

两式相减得,得

……………………4分

当n=1时,

=1适合上式……………………5分

…………………………6分

(2)由题意,

………………10分

不等式恒成立,即恒成立.…………11分

经检验:时均适合题意(写出一个即可).……………………12分

21.解:(1)设

由条件知

故C的方程为:……………………4分

(2)由

…………………………5分

l与椭圆C交点为

(*)

……………………7分

消去

整理得………………9分

容易验证所以(*)成立

即所求m的取值范围为………………12分

22.(1)证明:假设存在使得

…………………………2分

上的单调增函数.……………………5分

是唯一的.……………………6分

(2)设

上的单调减函数.

……………………8分

…………10分

…………12分

为钝角

∴△ABC为钝角三角形.……………………14分

 

 


同步练习册答案