11.已知数列.若存在.则的范围是( ) 查看更多

 

题目列表(包括答案和解析)

已知数列an=(1-2a)n,若
lim
n→∞
an
存在,则a的范围是(  )
A、[0,1]
B、[0,
1
2
)∪(
1
2
,1]
C、[0,1)
D、(0,1)

查看答案和解析>>

已知函数(m为常数),对任意的 恒成立.有下列说法:

①m=3;

②若(b为常数)的图象关于直线x=1对称,则b=1;

③已知定义在R上的函数F(x)对任意x均有成立,且当时,;又函数(c为常数),若存在使得成立,则c的取值范围是(一1,13).

其中说法正确的个数是

(A)3 个   (B)2 个   (C)1 个   (D)O 个

 

查看答案和解析>>

已知函数.

(Ⅰ)若函数在区间上有最小值,求的值.

(Ⅱ)若同时满足下列条件①函数在区间上单调;②存在区间使得上的值域也为;则称为区间上的闭函数,试判断函数是否为区间上的闭函数?若是求出实数的取值范围,不是说明理由.

 

查看答案和解析>>

已知集合M是满足下列两个条件的函数f(x)的全体:①f(x)在定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使f(x)在[a,b]上的值域为.若函数,g(x)∈M,则实数m的取值范围是   

查看答案和解析>>

已知函数.
(Ⅰ)若函数在区间上有最小值,求的值.
(Ⅱ)若同时满足下列条件①函数在区间上单调;②存在区间使得上的值域也为;则称为区间上的闭函数,试判断函数是否为区间上的闭函数?若是求出实数的取值范围,不是说明理由.

查看答案和解析>>

 

一、1―5    DCADC                      6―10   DCBCD          11―12  CA

二、13.                14.                  15. 140°    16.

三、17.解:

             

             

                          ………………………  8分

   ∵                ∴

                   ∴y的最小值为……………………  10分

18.解:设

则:      

           …………………………2分

……………………………4分

即:

        ∴

     且

    …………………8分

       …………………10分

       …………………12分

19.(2分)    得(4分)

时,上为增函数,不含题意(6分)

时,上为增函数,在内为减函数,在() 上为增函数   (8分)

∴当,当  (10分)

      解得:  (12分)

20.(1)略  (4分)

(2)解:过点C作于M      连DM

由(1)知:面ABC     ∴

是二面角D-AB-C的平面角(6分)

设CD=1  ∵

   ∴          ∵是正三角形

  ∴

(8分)

(3)取AB、AD、BC中点分别为M、N、O

连AO、MO、NO、MN、OD

是AC与BD所成的角。(10分)

是正三角形且平面平面BCD

面BCD                 ∴

又∵面ABC         ∴

中,         

∴直线AC和BD所成角为   (12分)

21.解:设

(1)若PQ轴时   

       ∴      ∴

           ∴   (4分)

(2)若PQ不垂直x轴时,设

    代入得:

  

      =

      =   (8分)

    ∴      ∴

(10分)      ∴

w.w.w.k.s.5 u.c.o.m

综上:(12分)

22.(1)取CD中点为K,连MK、NK

∴面MNK//面ADD1A

∴ MN//面ADD1A1   (4分)

(2)设F为AD中点,则PF面ABCD

于H                    则       ∴为平面角

            ∴

故二面角P-AE-D的大小为(8分)

(3)

D到面的距离为

(12分)

 

www.ks5u.com

 


同步练习册答案