(1)求证:MN//面(2)求二面角P-AE-D的大小(3)求三棱锥P-DEN的体积 查看更多

 

题目列表(包括答案和解析)

(2006四川,19)如下图,在长方体中,EP分别是BC的中点,MN分别是AE的中点,AB=2a

(1)求证:MN∥面

(2)求二面角PAED的大小:

(3)求三棱锥PDEN的体积.

查看答案和解析>>

如图,在长方体ABCD—A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a.

(1)求证:MN∥面ADD1A1

(2)求二面角P—AE—D的大小.

查看答案和解析>>

精英家教网如图,长方体ABCD-A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a,
(Ⅰ)求证:MN∥平面ADD1A1
(Ⅱ)求二面角P-AE-D的大小;
(Ⅲ)求三棱锥P-DEN的体积.

查看答案和解析>>

如图,长方体ABCD-A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=A1A1=a,Ab=2a,精英家教网
(Ⅰ)求证:MN∥平面ADD1A1
(Ⅱ)求二面角P-AE-D的大小.

查看答案和解析>>

如图,长方体ABCD-A1B1C1D1中,E、P分别是BC、A1D1的中点,M、N分别是AE、CD1的中点,AD=AA1=a,AB=2a,
(Ⅰ)求证:MN∥平面ADD1A1
(Ⅱ)求二面角P-AE-D的大小。

查看答案和解析>>

 

一、1―5    DCADC                      6―10   DCBCD          11―12  CA

二、13.                14.                  15. 140°    16.

三、17.解:

             

             

                          ………………………  8分

   ∵                ∴

                   ∴y的最小值为……………………  10分

18.解:设

则:      

           …………………………2分

……………………………4分

即:

        ∴

     且

    …………………8分

       …………………10分

       …………………12分

19.(2分)    得(4分)

时,上为增函数,不含题意(6分)

时,上为增函数,在内为减函数,在() 上为增函数   (8分)

∴当,当  (10分)

      解得:  (12分)

20.(1)略  (4分)

(2)解:过点C作于M      连DM

由(1)知:面ABC     ∴

是二面角D-AB-C的平面角(6分)

设CD=1  ∵

   ∴          ∵是正三角形

  ∴

(8分)

(3)取AB、AD、BC中点分别为M、N、O

连AO、MO、NO、MN、OD

是AC与BD所成的角。(10分)

是正三角形且平面平面BCD

面BCD                 ∴

又∵面ABC         ∴

中,         

∴直线AC和BD所成角为   (12分)

21.解:设

(1)若PQ轴时   

       ∴      ∴

           ∴   (4分)

(2)若PQ不垂直x轴时,设

    代入得:

  

      =

      =   (8分)

    ∴      ∴

(10分)      ∴

w.w.w.k.s.5 u.c.o.m

综上:(12分)

22.(1)取CD中点为K,连MK、NK

∴面MNK//面ADD1A

∴ MN//面ADD1A1   (4分)

(2)设F为AD中点,则PF面ABCD

于H                    则       ∴为平面角

            ∴

故二面角P-AE-D的大小为(8分)

(3)

D到面的距离为

(12分)

 

www.ks5u.com

 


同步练习册答案