08 查看更多

 

题目列表(包括答案和解析)

(08年福建师大附中模拟)(14分)

已知点是离心率为的椭圆C:上的一点。斜率为直线BD交椭圆C于B、D两点,且A、B、D三点不重合

   (1)求椭圆C的方程;

   (2)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

   (3)求证:直线、直线的斜率之和为定值.

查看答案和解析>>

(08年福建师大附中模拟)(12分)

设函数的定义域D,若对任意,都有,则称函数为“Storm”函数。已知函数的图像为曲线C,直线与曲线C相切于        

   (1)求的解析式;

   (2)设,若对 ,函数为“Storm”函数,求实数m的最小值.

查看答案和解析>>

(08年福建师大附中模拟)(12分)

已知数列满足

   (1)求的值; 

   (2)若数列为等差数列,请求出实数

   (3)求数列的通项及前项和.

查看答案和解析>>

(08年福建师大附中模拟)(本小题满分12分)

如图,在四棱锥中,底面是边长为2的正方形,侧面是正三角形,且平面平面为棱的中点

   (1)求证:平面

   (2)求二面角的大小;

   (3)求点到平面的距离.

 

 

查看答案和解析>>

(08年福建师大附中模拟)(12分)

某车间某两天内,每天都生产件产品,其中第一天生产了1件次品,第二天生产了2件次品,质检部每天要从生产的件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过。已知第一天通过检查的概率为

   (1)求的值

   (2)求两天都通过检查的概率

   (3)求两天中至少有一天通过检查的概率

查看答案和解析>>

一、选择题(8小题,每题5分,共40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

B

B

B

A

C

D

B

A

D

二、填空题(6小题,每题5分,共30分)

            

11. 5 ;    12.       13.15 ; 15         14。2;   15.

三、解答题(6小题,共80分)

16.解:(1)

 

----------------5分

 

    因为最小正周期为,∴        ,∴;----------6分

 

(2)由(1)知                   ,

 

因为,∴-------------------8分

因为             ,∴                   

 

所以----------------10分

     所以         或       .------------------12分

 

17.解:(1)已知函数,       ------2   

又函数图象在点处的切线与直线平行,且函数处取得极值,,且,解得

,且   --------------5分     

,        

所以函数的单调递减区间为  -----------------8分           

(2)当时,,又函数上是减函数

上恒成立,   --------------10分 

上恒成立。----------------12分

 

18.解:(1)

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

8

0.16

70.5~80.5

10

0.20

80.5~90.5

16

0.32

90.5~100.5

12

0.24

合计

50

1.00

 

 

 

---------------------4分

(2) 频数直方图如右上所示--------------------------------8分

(3) 成绩在75.5~80.5分的学生占70.5~80.5分的学生的,因为成绩在70.5~80.5分的学生频率为0.2 ,所以成绩在76.5~80.5分的学生频率为0.1 ,---------10分

成绩在80.5~85.5分的学生占80.5~90.5分的学生的,因为成绩在80.5~90.5分的学生频率为0.32 ,所以成绩在80.5~85.5分的学生频率为0.16  -------------12分

所以成绩在76.5~85.5分的学生频率为0.26,

由于有900名学生参加了这次竞赛,

所以该校获得二等奖的学生约为0.26´900=234(人)    -------------14分

19.解(Ⅰ)证明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD=A

∴MN⊥平面PAD  ………………3分

MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

∴∠BPC为直线PC与平面PBA所成的角  即…………7分

在Rt△PBC中,PC=BC/sin∠BPC=


  ………………10分

(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

∴∠PMQ即为二面角P―MN―Q的平面角  …………12分

      ∴   …………14分

20.(14分)

解(1),动圆的半径为r,则|PQ1|=r+3,

|PQ2|= r+1,|PQ1|-|PQ2|=2,…………………3分

P的轨迹是以O1O2为焦点的双曲线右支,a=1,c=2,

方程为………………………………………………6分

   (2)设Px1,y1),Qx2,y2),当k不存在时,不合题意.

       直线PQ的方程为y=kx-3),

       ………………8分

       由

      

       …………………………………………………………10分

       …………14分

 

 

 

 

 

 

21.  (1)设----------------3

,又

---------------------------------5

(2)由已知得

两式相减得,-------------------------7

.若

-------------------------------9

(3) 由,

.-----------------------------------11分

------------------------------13

可知,-------------------------------14. 分

 

 


同步练习册答案