14.已知x.y满足条件.若z=x+3y的最大值为8.则k= . 查看更多

 

题目列表(包括答案和解析)

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知点P(x,y)满足条件
y≥0
y≤x
2x+y+k≤0
(k为常数,且k∈R)
,若zmx+3y的最大值为8,则实数k等于(  )
A、-6B、-16C、6D、16

查看答案和解析>>

一、选择题

1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

二、填空题

11.148  12.-4  13.  14.-6  15.①②③④

三、解答题

16.解:⑴

                                                                                                                 3分

=1+1+2cos2x

=2+2cos2x

=4cos2x

∵x∈[0,]  ∴cosx≥0

=2cosx                                                                                                    6分

⑵ f (x)=cos2x-?2cosx?sinx

      =cos2x-sin2x

      =2cos(2x+)                                                                                           8分

∵0≤x≤  ∴

  ∴

,当x=时取得该最小值

 ,当x=0时取得该最大值                                                                  12分

17.由题意知,在甲盒中放一球概率为,在乙盒放一球的概率为                    3分

①当n=3时,x=3,y=0的概率为                                              6分

②|x-y|=2时,有x=3,y=1或x=1,y=3

它的概率为                                                                12分

18.解:⑴证明:在正方形ABCD中,AB⊥BC

又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

同理CD⊥PA  ∴PA⊥面ABCD    4分

⑵在AD上取一点O使AO=AD,连接E,O,

则EO∥PA,∴EO⊥面ABCD 过点O做

OH⊥AC交AC于H点,连接EH,则EH⊥AC,

从而∠EHO为二面角E-AC-D的平面角                                                             6分

在△PAD中,EO=AP=在△AHO中∠HAO=45°,

∴HO=AOsin45°=,∴tan∠EHO=

∴二面角E-AC-D等于arctan                                                                   8分

⑶当F为BC中点时,PF∥面EAC,理由如下:

∵AD∥2FC,∴,又由已知有,∴PF∥ES

∵PF面EAC,EC面EAC  ∴PF∥面EAC,

即当F为BC中点时,PF∥面EAC                                                                         12分

19.⑴f '(x)=3x2+2bx+c,由题知f '(1)=03+2b+c=0,

f (1)=-11+b+c+2=-1

∴b=1,c=-5                                                                                                    3分

f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

f (x)在[-,1]为减函数,f (x)在(1,+∞)为增函数

∴b=1,c=-5符合题意                                                                                      5分

⑵即方程:恰有三个不同的实解:

x3+x2-5x+2=k(x≠0)

即当x≠0时,f (x)的图象与直线y=k恰有三个不同的交点,

由⑴知f (x)在为增函数,

f (x)在为减函数,f (x)在(1,+∞)为增函数,

,f (1)=-1,f (2)=2

且k≠2                                                                                               12分

20.⑴∵

                                                                                         3分

∴{an-3n}是以首项为a1-3=2,公比为-2的等比数列

∴an-3n=2?(-2)n1

∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

∴bn=n?(-)n                                                                                                    8分

<6

∴m≥6                                                                                                                   13分

21.⑴设M(x0,y0),则N(x0,-y0),P(x,y)

AM:y=   ①

BN:y=   ②

联立①②  ∴                                                                                      4分

∵点M(xo,yo)在圆⊙O上,代入圆的方程:

整理:y2=-2(x+1)  (x<-1)                                                                             6分

⑵由

设S(x1、y1),T(x2、y2),ST的中点坐标(x0、y0)

则x1+x2=-(3+)

x1x2                                                                                                          8分

中点到直线的距离

故圆与x=-总相切.                                                                                        14分

⑵另解:∵y2=-2(x+1)知焦点坐标为(-,0)                                                  2分

顶点(-1,0),故准线x=-                                                                              4分

设S、T到准线的距离为d1,d2,ST的中点O',O'到x=-的距离为

又由抛物线定义:d1+d2=|ST|,∴

故以ST为直径的圆与x=-总相切                                                                      8分

 


同步练习册答案