?=0,故. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

 (2)若圆与直线交于两点,且,求的值.

【解析】本试题主要是考查了直线与圆的位置关系的运用。

(1)曲线轴的交点为(0,1),

轴的交点为(3+2,0),(3-2,0) 故可设的圆心为(3,t),则有32+(t-1)2=(2)2+t2,解得t=1.

(2)因为圆与直线交于两点,且。联立方程组得到结论。

 

查看答案和解析>>

我们把形如y=
b
|x|-a
(a>0,b>0)
的函数因其图象类似于汉字“囧”字,故生动地称为“囧函数”,并把其与y轴的交点关于原点的对称点称为“囧点”,以“囧点”为圆心凡是与“囧函数”有公共点的圆,皆称之为“囧圆”,则当a=1,b=1时,所有的“囧圆”中,面积的最小值为(  )
A、2πB、3πC、4πD、12π

查看答案和解析>>

某市2009年初拥有汽车40万量,每年年终将有当年汽车总量的5%报废,在第二年年初又将有一部分新车上牌,但为了保持该市空气质量,需要该市的汽车拥有量不超过60万量,故该市采取限制新上牌车辆数的措施进行控制,所以该市每年只有b万辆新上牌车.
(1)求第n年年初该市车辆总数an(2010年为第一年);
(2)当b=4时,试问该项措施能否有效?若有效,说明理由;若无效,请指出哪一年初开始无效.
(参考数据:lg2=0.30,lg3=0.48,lg19=1.28,lg21=1.32)

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727  0293  7140  9857  0347  4373  8636  9647  1417   4698  
0371  6233  2616  8045  6011  3661  9597  7424  6710   4281
据此估计,该射击运动员射击4次至少击中3次的概率为
0.75
0.75

查看答案和解析>>


同步练习册答案