②若m.l是异面直线., 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的离心率为,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点.且PQ∥OA交OB于点Q.
(1)若△PBQ和四边形OQPA的面积满足S四OQPA=3S△PBQ时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点M与P的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案