(Ⅰ)由得a4=2a3+24-1=81a3=33.同理可得 a2=13.a1=5 --------3分 查看更多

 

题目列表(包括答案和解析)

设椭圆(常数)的左右焦点分别为是直线上的两个动点,

(1)若,求的值;

(2)求的最小值.

【解析】第一问中解:设

    由,得

  ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值

解:设 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求椭圆的标准方程为:.………………2分

, ……4分

所以,当且仅当时,取最小值.…2分

解法二:, ………………4分

所以,当且仅当时,取最小值

 

查看答案和解析>>

19C.解:由,所以,所以,因为f(x)=x,所以解得x=-1或-2或2,所以选C

调查某医院某段时间内婴儿出生时间与性别的关系,得到以下数据。

晚上

白天

合计

男婴

24

31

55

女婴

8

26

34

合计

32

57

89

试问有多大把握认为婴儿的性别与出生时间有关系?

查看答案和解析>>

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

已知各项均为正数的数列{an} 满足
a
2
n+1
=2
a
2
n
+anan+1
,且a2+a4=2a3+4,其中n∈N*
(1)求数列{an} 的通项公式;
(2)令cn=1+
n
an
,记数列{an} 的前n项积为Tn,其中n∈N* 试比较Tn 与9的大小,并加以证明.

查看答案和解析>>

(1)Sn为等差数列{an}的前n项和,S2=S6,a4=1,求a5
(2)在等比数列{an}中,若a4-a2=24,a2+a3=6,求首项a1和公比q.

查看答案和解析>>


同步练习册答案