已知函数上为增函数. (1)求k的取值范围, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=sin2ωx+
3
cosωxcos(
π
2
-ωx)(ω>0),且函数y=f(x)的图象相邻两条对称轴之间的距为
π
2

(1)求f(
π
6
)的值.
(2)若函数 f(kx+
π
12
)(k>0)在区间[-
π
6
π
3
]上单调递增,求k的取值范围.

查看答案和解析>>

已知函数f(x)=
ax
x2+b
,在x=1处取得极值2.
(1)求函数f(x)的解析式
(2)m满足什么条件时,区间(m,2m+1)为函数f(x)的单调增区间;
(3)若P(x0,y0)为f(x)=
ax
x2+b
图象上任意一点,直线/与.f(x)的图象切于P点,不妨设直线l的斜率为对于任意的x0∈R和对于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求实数c的取值范围.

查看答案和解析>>

已知函数f(x)=ax,g(x)=lnx,其中a∈R.
( I)若函数F(x)=f(x)-g(x)有极值1,求a的值;
( II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;
(Ⅲ)证明:
n
k=1
sin
1
(k+1)2
<ln2.

查看答案和解析>>

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=
f(x)
x2
在(0,+∞)上为增函数,则称f(x)为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为Ω1,所有“二阶比增函数”组成的集合记为Ω2
(Ⅰ)已知函数f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求实数h的取值范围;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函数值由下表给出,
x a b c a+b+c
f(x) d d t 4
求证:d(2d+t-4)>0;
(Ⅲ)定义集合Φ={f(x)|f(x)∈Ω2,且存在常数k,使得任取x∈(0,+∞),f(x)<k},请问:是否存在常数M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,说明理由.

查看答案和解析>>

已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)定理:函数g(x)=ax+
b
x
(a、b是正常数)在区间(0,
b
a
)
上为减函数,在区间(
b
a
,+∞)
上为增函数.参考该定理,解决下面问题:是否存在实数m同时满足以下两个条件:①不等式f(x)-
m
2
>0
恒成立;②方程f(x)-m=0有解.若存在,试求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案