ㄊ极大 查看更多

 

题目列表(包括答案和解析)

函数f(x)=-x3+3x-1的极大植与极小值分别为(  )

查看答案和解析>>

已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;
(2)当a<0时,若函数满足y极大=1,y极小=-3,试求y=f(x)的解析式;
(3)当x∈(0,1]时,y=f(x)图象上任意一点处的切线的倾斜角为θ,且0≤θ≤
π4
,求a的取值范围.

查看答案和解析>>

某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.
经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=
40x+1200,    0<x<40
2x2-100x+5000,40≤x≤80
,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.
(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?
(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;
(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.

查看答案和解析>>

已知三次函数f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b为实常数.
(1)若a=3,b=3时,求函数f(x)的极大、极小值;
(2)设函数g(x)=f′(x)+7,其中f′(x)是f(x)的导函数,若g(x)的导函数为g′(x),g′(0)>0,g(x)与x轴有且仅有一个公共点,求
g(1)
g′(0)
的最小值.

查看答案和解析>>

给定以下命题:
(1)函数y=x+cosx在区间(-
π
2
π
2
)
上有唯一的零点;
(2)向量
a
与向量
b
共线,则向量
a
与向量
b
方向相同或是方向相反;
(3)若角α=β,则一定有tanα=tanβ;
(4)若?x0∈R,使f′(x0)=0,则函数f(x)在x=x0处取得极大或是极小值.
则上述命题中,假命题的个数为(  )

查看答案和解析>>


同步练习册答案