题目列表(包括答案和解析)
已知椭圆的长轴长为,焦点是,点到直线的距离为,过点且倾斜角为锐角的直线与椭圆交于A、B两点,使得.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-的距离为可知-+=.得到a2=4而c=,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用,设出点A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在椭圆+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-的距离为,∴-+=.
∴a2=4而c=,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知
,
∴……6分
∵A、B在椭圆+y2=1上,
∴……10分
∴l的斜率为=.
∴l的方程为y=(x-),即x-y-=0.
已知数列是首项为的等比数列,且满足.
(1) 求常数的值和数列的通项公式;
(2) 若抽去数列中的第一项、第四项、第七项、……、第项、……,余下的项按原来的顺序组成一个新的数列,试写出数列的通项公式;
(3) 在(2)的条件下,设数列的前项和为.是否存在正整数,使得?若存在,试求所有满足条件的正整数的值;若不存在,请说明理由.
【解析】第一问中解:由得,,
又因为存在常数p使得数列为等比数列,
则即,所以p=1
故数列为首项是2,公比为2的等比数列,即.
此时也满足,则所求常数的值为1且
第二问中,解:由等比数列的性质得:
(i)当时,;
(ii) 当时,,
所以
第三问假设存在正整数n满足条件,则,
则(i)当时,
,
x2 |
4 |
2 |
OA |
OB |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com