比函数有下界的定义.给出函数在D上有上界的定义.并判断(1) 查看更多

 

题目列表(包括答案和解析)

如右图(1)所示,定义在区间上的函数,如果满     

足:对常数A,都有成立,则称函数  

在区间上有下界,其中称为函数的下界. (提示:图(1)、(2)中的常数可以是正数,也可以是负数或零)

(Ⅰ)试判断函数上是否有下界?并说明理由;

(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.

请你类比函数有下界的定义,给出函数在区间

有上界的定义,并判断(Ⅰ)中的函数在上是否

有上界?并说明理由;                   

(Ⅲ)若函数在区间上既有上界又有下界,则称函数

在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是是常数)上的有界函数?

查看答案和解析>>

如右图(1)所示,定义在区间上的函数,如果满     
足:对常数A,都有成立,则称函数  
在区间上有下界,其中称为函数的下界. (提示:图(1)、(2)中的常数可以是正数,也可以是负数或零)
(Ⅰ)试判断函数上是否有下界?并说明理由;
(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界.
请你类比函数有下界的定义,给出函数在区间
有上界的定义,并判断(Ⅰ)中的函数在上是否
有上界?并说明理由;                   
(Ⅲ)若函数在区间上既有上界又有下界,则称函数
在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是是常数)上的有界函数?

查看答案和解析>>

如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)  

(Ⅰ)试判断函数f(x)=x3+在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)若函数f(x)在D上既有上界又有下界,则称函数f(x)在D上有界,函数f(x)叫做有界函数.试探究函数f(x)=ax3+(a>0,b>0a,b是常数)是否是[m,n](m>0,n>0,m、n是常数)上的有界函数?

查看答案和解析>>

如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)  

(Ⅰ)试判断函数f(x)=x3+在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)若函数f(x)在D上既有上界又有下界,则称函数f(x)在D上有界,函数f(x)叫做有界函数.试探究函数f(x)=ax3+(a>0,b>0a,b是常数)是否是[m,n](m>0,n>0,m、n是常数)上的有界函数?

查看答案和解析>>

(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)

(Ⅰ)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>


同步练习册答案