由右边得x≤+1.当t=16时.+1有最小值 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=为常数。

(I)当=1时,求f(x)的单调区间;

(II)若函数f(x)在区间[1,2]上为单调函数,求的取值范围。

【解析】本试题主要考查了导数在研究函数中的运用。第一问中,利用当a=1时,f(x)=,则f(x)的定义域是然后求导,,得到由,得0<x<1;由,得x>1;得到单调区间。第二问函数f(x)在区间[1,2]上为单调函数,则在区间[1,2]上恒成立,即即,或在区间[1,2]上恒成立,解得a的范围。

(1)当a=1时,f(x)=,则f(x)的定义域是

,得0<x<1;由,得x>1;

∴f(x)在(0,1)上是增函数,在(1,上是减函数。……………6分

(2)。若函数f(x)在区间[1,2]上为单调函数,

在区间[1,2]上恒成立。∴,或在区间[1,2]上恒成立。即,或在区间[1,2]上恒成立。

又h(x)=在区间[1,2]上是增函数。h(x)max=(2)=,h(x)min=h(1)=3

,或。    ∴,或

 

查看答案和解析>>

已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .

(1)求数列{an}的通项公式;

(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;

(3)若cn,证明:( n∈N).

 

查看答案和解析>>

(本小题满分14分)

已知数列{an}中,a1t(t∈R,且t≠0,1),a2t2,且当xt时,

函数f(x)=(anan-1)x2-(an+1an)x(n≥2,n∈N?)取得极值.

(Ⅰ)求证:数列{an+1an}是等比数列;

(Ⅱ)若bnanln|an|(n∈N?),求数列{bn}的前n项和Sn

(Ⅲ)当t=-时,数列{bn}中是否存在最大项?如果存在,说明是第几项;如果不存在,请说明理由.

 

 

查看答案和解析>>

已知数列{an},且x=是函数f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求数列{an}的通项公式;
(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若cn,证明:( n∈N).

查看答案和解析>>

(本小题满分14分)

    已知数列{an},且x是函数f(x)=an-1x3-3[(t+1)anan+1] x+1(n≥2)的一个极值点.数列{an}中a1ta2t2(t>0且t≠1) .

(1)求数列{an}的通项公式;

(2)记bn=2(1-),当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;

(3)若cn,证明:( n∈N).

查看答案和解析>>


同步练习册答案