所以满足条件------3分 查看更多

 

题目列表(包括答案和解析)

以下四个命题:
①?q是?p的必要不充分条件,则p是q的充分不必要条件;
②和定点A(5,0)及定直线l:x=
25
4
的距离之比为
5
4
的点的轨迹方程为
x2
16
-
y2
9
=1

③当d无限趋近于0时,
3+d
-
3
d
无限趋近于
3
6

④设点F1(0,-3),F2(0,3),点P满足|PF1|+|PF2|=a+
9
a
(a>0)
,则点P的轨迹为椭圆;
其中真命题为
(写出所以真命题的序号).

查看答案和解析>>

以下四个命题:
①¬q是¬p的必要不充分条件,则p是q的充分不必要条件;
②和定点A(5,0)及定直线的距离之比为的点的轨迹方程为
③当d无限趋近于0时,无限趋近于
④设点F1(0,-3),F2(0,3),点P满足,则点P的轨迹为椭圆;
其中真命题为    (写出所以真命题的序号).

查看答案和解析>>

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

在△ABC中,角A、B、C的对边分别为a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),满足=

(Ⅰ)求角B的大小;

(Ⅱ)设=(sin(C+),), =(2k,cos2A) (k>1),  有最大值为3,求k的值.

【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用

第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二问中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.

 

查看答案和解析>>

(本小题满分14分)一束光线通过点M(-3,3)射到x轴上,然后反射到圆C上,其中圆C满足以下条件:过点A(1,2)和点B(2,3)且圆心在直线上。
(1)求圆C的方程;
(2)求通过圆C圆心的反射光线所在直线的方程;
(3)若反射光线所在直线与圆C相切,求入射光线所在直线的方程

查看答案和解析>>


同步练习册答案