知:若不是函数的极值点.则. 查看更多

 

题目列表(包括答案和解析)

已知:二次函数f(x)=ax2+bx+1,其中a,b∈R,g(x)=ln(ex),且函数F(x)=f(x)-g(x)在x=1处取得极值.
(I)求a,b所满足的关系;
(II)若直线l:y=kx(k∈R)与函数y=f(x)在x∈[1,2]上的图象恒有公共点,求k的最小值;
(III)试判断是否存在a∈(-2,0)∪(0,2),使得对任意的x∈[1,2],不等式(x+a)F(x)≥0恒成立?如果存在,请求出符合条件的a的所有值;如果不存在,说明理由.

查看答案和解析>>

已知:函数f(x)=-x(x-a)2  (a∈R)
(1)求a=1时曲线y=f(x)在点(2,f(2))处的切线方程
(2)当a<0时,求函数f(x)的极小值
(3)是否存在实数a,使得f(x)在[-1,1]上单调递增.若存在求出a,若不存在请说明理由.

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

(12分)已知函数的图像经过(o,1),且

(1)求的值域;

(2)设命题,命题q:函数在R上无极值,是否存在实数m满足复合命题p且q为真命题?若存在,求出m的范围;若不存在,说明理由.

 

查看答案和解析>>

已知:函数f(x)=-x(x-a)2 (a∈R)
(1)求a=1时曲线y=f(x)在点(2,f(2))处的切线方程
(2)当a<0时,求函数f(x)的极小值
(3)是否存在实数a,使得f(x)在[-1,1]上单调递增.若存在求出a,若不存在请说明理由.

查看答案和解析>>


同步练习册答案