题目列表(包括答案和解析)
(本小题满分12分)袋子中有质地、大小完全相同的4个球,编号分别为1,2,3,4.甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,若两个编号的和为奇数算甲赢,否则算乙赢.记基本事件为,其中分别为甲、乙摸到的球的编号。
(1)列举出所有的基本事件,并求甲赢且编号的和为5的事件发生的概率;
(2)比较甲胜的概率与乙胜的概率,并说明这种游戏规则是否公平。(无详细解答过程,不给分)
(3) 如果请你猜这两球的号码之和,猜中有奖.猜什么数获奖的可能性大?说明理由.
(本小题满分12分)甲乙两人各有个材质、大小、形状完全相同的小球,甲的
小球上面标有五个数字,乙的小球上面标有五个数字.把各自的小球放
入两个不透明的口袋中,两人同时从各自的口袋中随机摸出个小球.规定:若甲摸出的小
球上的数字是乙摸出的小球上的数字的整数倍,则甲获胜,否则乙获胜.
(1)写出基本事件空间;
(2)你认为“规定”对甲、乙二人公平吗?说出你的理由.
(理)(本小题满分12分)
口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数ξ的分布列及数学期望.
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
B
C
A
B
A
C
B
B
理D 文B
D
理D 文C
二.填空题
13.(理)-1;(文) (-1,1)∪(2,+∞). 14. 90.
15. ; 16. (理)x+2y-3=0; (文).
三.解答题
17. 解:(I)平移以后得
,又关于对称
, ,
当且仅当时取最大值,
所以,取得最大值时的集合为.…………6分
(II)的最小正周期为; ,
,在[上的值域为.…………12分
18.解:(I)当n∈N时有:=2-3n, ∴=2-3(n+1),
两式相减得:=2-2-3 ∴=2+3。 ……3分
∴+3=2(+3)。
又==2-3, ∴=3, +3=6≠0 ……4分
∴数列{+3}是首项6,公比为2的等比数列.从而c=3. ……6分
(II)由(1)知:+3=, ∴=-3. ………8分
(Ⅲ)假设数列{}中是否存在三项,,,(r<s<t),它们可以构成等差数列,
∵<<, ∴只能是+=2,
∴(-3)+(-3)=2(-3)
即+=.∴1+=.
∵r<s<t,r、s、t均为正整数,∴式左边为奇数右边为偶数,不可能成立.
因此数列{}中不存在可以构成等差数列的三项. ………12分
19. (理)解:设从甲袋中取出个白球的事件为,从乙袋中取出个白球的事件为其中=0,1,2,则,.
(I),,
所以………………………..6分
(II)分布列是
0
1
2
3
4
P
……………12分
(文) 19.(I)三人恰好买到同一只股票的概率。 ……4分
(II)解法一:三人中恰好有两个买到同一只股票的概率.……9分
由(I)知,三人恰好买到同一只股票的概率为,所以三人中至少有两人买到同一只股票的概率。 ……12分
|